Advertisement

Perceptually Relevant Pattern Recognition Applied to Cork Quality Detection

  • Beatriz Paniagua
  • Patrick Green
  • Mike Chantler
  • Miguel A. Vega-Rodríguez
  • Juan A. Gómez-Pulido
  • Juan M. Sánchez-Pérez
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5627)

Abstract

This paper demonstrates significant improvement in the performance of a computer vision system by incorporating the results of an experiment on human visual perception. This system was designed to solve a problem existing in the cork industry: the automatic classification of cork samples according to their quality. This is a difficult problem because cork is a natural and heterogeneous material. An eye-tracker was used to analyze the gaze patterns of a human expert trained in cork classification, and the results identified visual features of cork samples used by the expert in making decisions. Variations in lightness of the cork surface proved to be a key feature, and this finding was used to select the features included in the final system: defects in the sample (thresholding), size of the biggest defect (morphological operations), and four Laws textural features, all working on a Neuro-Fuzzy classifier. The results obtained from the final system show lower error rates than previous systems designed for this application.

Keywords

Stopper quality cork industry vision science image processing automated visual inspection system perceptual features eye tracking 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    ICMC: Instituto del Corcho, Madera y Carbón Vegetal, Instituto de Promoción del Corcho (ICMC-IPROCOR) (2009), http://www.iprocor.org
  2. 2.
    Gonzalez-Adrados, J.R., Lopes, F., Pereira, H.: The Quality Grading of Cork Planks with Classification Models based on Defect Characterization. Holz als Rohund Werkstoff 58(1-2), 39–45 (2000)CrossRefGoogle Scholar
  3. 3.
    Vega-Rodriguez, M.A., Sanchez-Perez, J.M., Gomez-Pulido, J.A.: Using Computer Vision and FPGAs in the Cork Industry. In: Proceedings of the IEEE Mechatronics and Robotics 2004 (2004)Google Scholar
  4. 4.
    Chang, J., Han, G., Valverde, J.M., Griswold, N.C., Duque-Carrillo, J.F., Sánchez-Sinencio, E.: Cork Quality Classification System using a Unified Image Processing and Fuzzy-Neural Network Methodology. IEEE Transactions on Neural Networks 8(4), 964–974 (1997)CrossRefGoogle Scholar
  5. 5.
    Radeva, P., Bressan, M., Tobar, A., Vitrià, J.: Real-time Inspection of Cork Stoppers using Parametric Methods in High Dimensional Spaces. In: The IASTED Conference on Signal and Image Processing SIP (2002)Google Scholar
  6. 6.
    Paniagua-Paniagua, B., Vega-Rodríguez, M.A., Gómez-Pulido, J.A., Sánchez-Pérez, J.M.: Comparative Study of second-order gray level Texture Statistics to evaluate Cork Quality. In: Visualization, imaging, and image processing (VIIP 2006), vol. I, pp. 447–452 (2006)Google Scholar
  7. 7.
    Paniagua-Paniagua, B., Vega-Rodríguez, M.A., Bustos-García, P., Gómez-Pulido, J.A., Sánchez-Pérez, J.M.: Advanced Texture Analysis in Cork Quality Detection. In: 5th IEEE International Conference on Industrial Informatics (INDIN 2007), vol. II, pp. 311–315 (2007)Google Scholar
  8. 8.
    Paniagua-Paniagua, B., Vega-Rodríguez, M.A., Gómez-Pulido, J.A., Sánchez-Pérez, J.M.: Comparative Study of thresholding techniques to evaluate Cork Quality. In: Visualization, imaging, and image processing (VIIP 2006), vol. I, pp. 441–446 (2006)Google Scholar
  9. 9.
    Paniagua-Paniagua, B., Vega-Rodríguez, M.A., Nagahashi, H., Gómez-Pulido, J.A., Sánchez-Pérez, J.M.: Using 3D Features to Evaluate Cork Quality. In: International Conference on Signal Processing and Multimedia Applications (SIGMAP 2007), vol. I, pp. 79–84 (2007)Google Scholar
  10. 10.
    Paniagua-Paniagua, B., Vega-Rodríguez, M.A., Sánchez-Pérez, J.M., Gómez-Pulido, J.A.: Image Processing and Neuro-Fuzzy Computing for Cork Quality Classification. In: 5th IEEE International Conference on Industrial Informatics (INDIN 2007), vol. II, pp. 657–661 (2007)Google Scholar
  11. 11.
    Long, H., Leow, W.K.: Perceptual texture space improves perceptual consistency of computational features. In: IJCAI 2001, pp. 1391–1396 (2001)Google Scholar
  12. 12.
    Laws, K.I.: Rapid Texture Identification. In: SPIE Image Processing for Missile Guidance, vol. 238, pp. 376–380 (1980)Google Scholar
  13. 13.
    Santella, A., DeCarlo, D.: Abstracted Painterly Renderings Using Eye-Tracking Data. In: International Symposium on Non Photorealistic Animation and Rendering (NPAR 2002), pp. 75–82 (2002)Google Scholar
  14. 14.
    Rele, R.S., Duchowski, A.T.: Using Eye Tracking to Evaluate Alternative Search Results Interfaces. In: Proceedings of the Human Factors and Ergonomics Society, pp. 26–30 (2005)Google Scholar
  15. 15.
    Bruce, V., Green, P.R., Georgeson, M.: Visual Perception: Physiology, Psychology and Ecology, 4th edn. Psychology Press, Hove (2003)Google Scholar
  16. 16.
    Tobii Inc., Tobii X50 Series Manual (2004)Google Scholar
  17. 17.
    Tobii Inc. official website, http://www.tobii.com

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Beatriz Paniagua
    • 1
  • Patrick Green
    • 2
  • Mike Chantler
    • 3
  • Miguel A. Vega-Rodríguez
    • 1
  • Juan A. Gómez-Pulido
    • 1
  • Juan M. Sánchez-Pérez
    • 1
  1. 1.Dept. Technologies of Computers and CommunicationsUniversity of ExtremaduraCáceresSpain
  2. 2.School of Life SciencesHeriot-Watt UniversityEdinburghUnited Kingdom
  3. 3.School of Mathematical & Computer SciencesHeriot-Watt UniversityEdinburghUnited Kingdom

Personalised recommendations