Advertisement

Prostate TRUS Image Region-Based Feature Extraction and Evaluation

  • Eric K. T. Hui
  • S. S. Mohamed
  • M. M. A. Salama
  • A. Fenster
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5627)

Abstract

In this work a new informative feature set is proposed to identify suspicious Regions Of Interest (ROIs) in the prostate TransRectal UltraSound (TRUS) images. The proposed features are region based to overcome the limitations present in the pixel based feature extraction methods. First a thresholding algorithm integrated with the medical information is used to identify different candidate ROIs. Next, image registration is performed to transform the prostate image to a model based from which some of the proposed region based features are extracted. Subsequently, the proposed raw based and model based region features are extracted at the region level.

Finally Mutual Information is used to evaluate the extracted features and compare their information content with both the typical pixel based features and the well known texture and grey level features. It was found that the proposed features provide more information than both the texture features and the pixel based features.

Keywords

feature extraction region-based features mutual information symmetry measure TRUS 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Prostate Cancer Statistics, Canadian Cancer Society (August 2008)Google Scholar
  2. 2.
    Catalona, W.J., Smith, D.S., Ratliff, T.L.: Measurement of prostate specific antigen in serum as a screening test for prostate cancer. English J. Medicine 324, 1156–1161 (1991)CrossRefGoogle Scholar
  3. 3.
    Standaert, B., Alwan, A., Nelen, V., Denis, L.: Prostate volume and cancer in screening programs. Prostate 33, 188–194 (1997)CrossRefGoogle Scholar
  4. 4.
    Presti, J.R.J.C., O’Dowd, G.J., Miller, M.C., Mattu, R., Veltri, R.W.: Extended peripheral zone biopsy schemes increase cancer detection rates and minimize variance in prostate specific antigen and age related cancer rates: Results of a community multi-practice study. J. Urol. 169(1), 125–129 (2003)CrossRefGoogle Scholar
  5. 5.
    Presti, J.R.J.C., Chang, J.J., Bhargava, V., Shinohara, K.: The optimal systematic prostate biopsy scheme should include 8 rather than 6 biopsies: Results of a prospective clinical trial. J. Urol. 163(1), 163–167 (2000)CrossRefGoogle Scholar
  6. 6.
    Mohamed, S.S., Salama, M.M.A., Kamel, M., Rizkalla, K., Chin, J.: Prostate Cancer Multi-feature Analysis using TRUS Images. Physics in Medicine and Biology 50(15), N1175–N1185 (2005)CrossRefGoogle Scholar
  7. 7.
    Scheipers, U., Ermert, H., Sommerfeld, H.-J., Garcia-Schurmann, M., Senge, T., Philippou, S.: Ultrasounic multifeature tissue characterization for prostate diagnostics. Ultrasound. Med. Biol. 29(8), 1137–1149 (2003)CrossRefGoogle Scholar
  8. 8.
    Mohamed, S.S., Salama, M.M.A.: Prostate Cancer Spectral Multi-Feature Analysis using TRUS Images. IEEE Transactions on Medical Imaging 27(4), 548–556 (2008)CrossRefGoogle Scholar
  9. 9.
    Mohamed, S.S., Li, J., Salama, M.M.A., Freeman, G.: Prostate Tissue Texture Feature Extraction for Cancer Recognition in TRUS Images. Journal of Digital Imaging (2008) DOI 10.1007/s10278-008-9124-1Google Scholar
  10. 10.
    Lizzi, F.L., Feleppa, E.J., Astor, M., Kalisz, A.: Statistics of ultrasonic spectral parameters for prostate and liver examinations. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control 44(4), 935–942 (1997)CrossRefGoogle Scholar
  11. 11.
    Rifkin, M.D.: Ultrasound of the Prostate: Imaging in the Diagnosis and Therapy of Prostatic Disease, 2nd edn. Lippincott Williams and Wilkins (1996)Google Scholar
  12. 12.
    Papanikolaou, N., Gearheart, D., Bolek, T., Meigooni, A., Meigooni, D., Mohiuddin, M.: A Volumetric and Dosimetric Study of LDR Brachytherapy Prostate Implants based on Image Fusion of Ultrasound and Computed Tomography. In: Proceedings of the 22nd Annual EMBS International Conference, Chicago IL, July 23-28 (2000)Google Scholar
  13. 13.
    Studholme, C., Hill, D.L.G., Hawkes, D.J.: Automated three-dimensional registration of a magnetic resonance and positron emission tomography brain images by ultiresolution optimization of voxel similarity measures. Medical Physics 24(1), 25–35 (1997)CrossRefGoogle Scholar
  14. 14.
    Kostelec, P.J., Weaver, J.B., Healy, D.M.: Multiresolution elastic image registration. Medical Physics 25(9), 1593–1604 (1998)CrossRefGoogle Scholar
  15. 15.
    Jacobs, M.A., Windham, J.P., Soltanian-Zadeh, H., Peck, D.J., Knight, R.A.: Registration and warping of magnetic resonance images to histological sections. Medical Physics 26(8), 1568–1578 (1999)CrossRefGoogle Scholar
  16. 16.
    Bharatha, A., Hirose, M., Hata, N., Warfield, S.K., Ferrant, M., Zou, K.H., Suarez-Santana, E., Ruiz- Alzola, J., D’Amico, A., Cormack, r.A., Kikinis, R., Jolesz, F.A., Tempany, C.M.C.: Evaluation of threedimensional finite element-based deformable registration of pre- and intraoperative prostate imaging. Medical Physics 28(12), 2551–2560 (2001)CrossRefGoogle Scholar
  17. 17.
    Christensen, G.E., Yin, P., Vannier, M.W., Chao, K.S.C., Dempsey, J.F., Williamson, J.F.: Large- Deformation Image Registration using Fluid Landmarks. Department of Electrical and Computer Engineering, The University of IowaGoogle Scholar
  18. 18.
    Joshi, S.C., Miller, M.I.: Landmark Matching via Large Deformation Diffeomorphisms. IEEE Transactions on Image Processing 9(8), 1357–1370 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Mir, A.H., Hanmandlu, M., Tandon, S.N.: Texture Analysis of CT Images. Engineering in Medicine and Biology Magazine 14(6), 781–786 (1995)CrossRefGoogle Scholar
  20. 20.
    Prakash, K.N.B., Ramakrishnan, A.G., Suresh, S., Chow, T.W.P.: Fetal Lung Maturity Analysis Using Ultrasound Image Features. IEEE Transactions on Information Technology in Biomedicine 6(1), 38–45 (2002)CrossRefGoogle Scholar
  21. 21.
    Parzen, E.: On Estimation of a Probability Density Function and Mode. The Annals of Mathematical Statistics 33(3), 1065–1076 (1962)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Eric K. T. Hui
    • 1
  • S. S. Mohamed
    • 1
  • M. M. A. Salama
    • 1
  • A. Fenster
    • 2
  1. 1.University of WaterlooCanada
  2. 2.University of Western OntarioCanada

Personalised recommendations