Analysis of Human Gait Bilateral Symmetry for Functional Assessment after an Orthopaedic Surgery

  • Ying Bo Xu
  • Chun Hao Wang
  • Paul Zalzal
  • Oleg Safir
  • Ling Guan
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5627)


We proposed a color marker based computer vision system which can provide temporal-spatial and kinematic information of human gait. This system provides quantitative gait pattern information for clinicians to evaluate the rehabilitation progress of the patients who had undertaken total knee replacement (TKR) and/or total hip replacement (THR) surgeries. The symmetry between left leg and right leg is a very useful feature for this evaluation purpose. To calculate this parameter, we introduced a new curve feature to describe the gait pattern. This curve feature serves as people’s walking signature. The symmetry is denoted by dynamic time warping (DTW) distance of this walking signature. Through experiments, we demonstrate the effectiveness of the proposed system.


gait pattern symmetry dynamic time warping 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gross, A.: Report of the Total Hip and Knee Joint Replacement Expert Panel,
  2. 2.
    Begg, Rezaul, K., Palaniswami, M., Owen, B.: Support Vector Machines for Automated Gait Classification. IEEE Transactions on Biomedical Engineering 52(5), 828–838 (2005)CrossRefGoogle Scholar
  3. 3.
    Weir, R.F., Childress, D.S.: Portable Devices for the Clinical Measurement of Gait Performance and Outcomes. In: Proceedings of the 22nd Annual EMBS International Conference, Chicago IL (2000)Google Scholar
  4. 4.
    Lee, H., Guan, L., Burne, J.A.: Human Gait and Posture Analysis for Diagnosing Neurological Disorders. In: International Conference on Image Processing, vol. 2, pp. 435–438 (2000)Google Scholar
  5. 5.
    Nixon, M.S., Carter, J.N., Cunado, D., Huang, P.S., Stevenage, S.V.: Automatic Gait Recognition. In: Jain, A.K., Bolle, R., Pankanti, S. (eds.) Biometrics: Personal Identification in Networked Society, pp. 231–250. Kluwer Academic Publishing, Dordrecht (1999)CrossRefGoogle Scholar
  6. 6.
    Angeloni, C., O’Riley, P., Krebs, D.E.: Frequency Content of Whole Body Gait Kinematic Data. IEEE Transactions o Rehabilitation Engineering 2(1), 40–46 (1994)CrossRefGoogle Scholar
  7. 7.
    Reisfeld, D., Wolfon, H., Yeshurun, Y.: Context-Free Attentional Operators: The Generalized Symmetry Transform. International Journal of Computer Vision 14, 119–130 (1995)CrossRefGoogle Scholar
  8. 8.
    Nixon, M.S., Tan, T.N., Chellappa, R.: Human Identification Based on Gait. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  9. 9.
    Murray, M.P., Drought, A.B., Kory, R.C.: Walking Patterns of Normal Men. Journal of Bone and Joint Surgery 46-A(2), 335–360 (1964)CrossRefGoogle Scholar
  10. 10.
    Kuzmanic, A., Zanchi, V.: Hand shape classification using DTW and LCSS as similarity measures for vision-based gesture recognition system. In: EUROCON 2007, The International Conference on Computer as a Tool, pp. 264–269 (2007)Google Scholar
  11. 11.
    Munich, M.E., Perona, P.: Continuous Dynamic Time Warping for Translation-Invariant Curve Alignment with Applications to Signature Verification. In: Proceedings of 7th International Conference on Computer Vision, vol. 1, pp. 108–115 (1999)Google Scholar
  12. 12.
    Wang, J., Makihara, Y., Yagi, Y.: Human Tracking and Segmentation Supported by Silhouette-based Gait Recognition. In: IEEE International Conference on Robotics and Automation, pp. 1698–1703 (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Ying Bo Xu
    • 1
  • Chun Hao Wang
    • 1
  • Paul Zalzal
    • 2
  • Oleg Safir
    • 3
  • Ling Guan
    • 1
  1. 1.Department of Electrical and Computer EngineeringRyerson UniversityTorontoCanada
  2. 2.Department of SurgeryMcMaster UniversityHamiltonCanada
  3. 3.Mt. Sinai HospitalTorontoCanada

Personalised recommendations