Elastic Morphing of 2D and 3D Objects on a Shape Manifold

  • C. Samir
  • P. Van Dooren
  • D. Laurent
  • K. A. Gallivan
  • P. -A. Absil
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5627)


We present a new method for morphing 2D and 3D objects. In particular we focus on the problem of smooth interpolation on a shape manifold. The proposed method takes advantage of two recent works on 2D and 3D shape analysis to compute elastic geodesics between any two arbitrary shapes and interpolations on a Riemannian manifold. Given a finite set of frames of the same (2D or 3D) object from a video sequence, or different expressions of a 3D face, our goal is to interpolate between the given data in a manner that is smooth. Experimental results are presented to demonstrate the effectiveness of our method.


Riemannian Manifold Control Point Euclidean Plane Closed Curf Lagrange Interpolation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Altafini, C.: The de casteljau algorithm on se(3). In: Nonlinear control in the Year 2000, pp. 23–34 (2000)Google Scholar
  2. 2.
    Crouch, P., Kun, G., Leite, F.S.: The de casteljau algorithm on the lie group and spheres. Journal of Dynamical and Control Systems 5, 397–429 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Glaunes, J., Qiu, A., Miller, M., Younes, L.: Large deformation diffeomorphic metric curve mapping. International Journal of Computer Vision 80, 317–336 (2008)CrossRefGoogle Scholar
  4. 4.
    Hughes, J.F.: Scheduled fourier volume morphing. In: Computer Graphics (SIGGRAPH 1992), pp. 43–46 (1992)Google Scholar
  5. 5.
    Jakubiak, J., Leite, F.S., Rodrigues, R.C.: A two-step algorithm of smooth spline generation on Riemannian manifolds. Journal of Computational and Applied Mathematics, 177–191 (2006)Google Scholar
  6. 6.
    Joshi, S.H., Klassen, E., Srivastava, A., Jermyn, I.: A novel representation for riemannian analysis of elastic curves in Rn, CVPR (2007)Google Scholar
  7. 7.
    Klassen, E., Srivastava, A.: Geodesics between 3D closed curves using path-straightening. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 95–106. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  8. 8.
    Klassen, E., Srivastava, A., Mio, W., Joshi, S.: Analysis of planar shapes using geodesic paths on shape spaces. IEEE Patt. Analysis and Machine Intell. 26(3), 372–383 (2004)CrossRefGoogle Scholar
  9. 9.
    Kume, A., Dryden, I.L., Le, H., Wood, A.T.A.: Fitting cubic splines to data in shape spaces of planar configurations. Proceedings in Statistics of Large Datasets, LASR, 119–122 (2002)Google Scholar
  10. 10.
    Lancaster, P., Salkauskas, K.: Curve and surface fitting. Academic Press, London (1986)zbMATHGoogle Scholar
  11. 11.
    Lazarus, F., Verroust, A.: Three-dimensional metamorphosis: a survey. The Visual Computer, 373–389 (1998)Google Scholar
  12. 12.
    Lin, A., Walker, M.: Cagd techniques for differentiable manifolds, Tech. report, York University (July 2001)Google Scholar
  13. 13.
    Popeil, T., Noakes, L.: Bézier curves and c 2 interpolation in Riemannian manifolds. Journal of Approximation Theory, 111–127 (2007)Google Scholar
  14. 14.
    Samir, C., Srivastava, A., Daoudi, M., Klassen, E.: An intrinsic framework for analysis of facial surfaces. International Journal of Computer Vision 82, 80–95 (2009)CrossRefGoogle Scholar
  15. 15.
    Schmidt, F.R., Clausen, M., Cremers, D.: Shape matching by variational computation of geodesics on a manifold. In: Franke, K., Müller, K.-R., Nickolay, B., Schäfer, R. (eds.) DAGM 2006. LNCS, vol. 4174, pp. 142–151. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  16. 16.
    Spivak, M.: A comprehensive introduction to differential geometry, vol. i & ii. Publish or Perish, Inc., Berkeley (1979)zbMATHGoogle Scholar
  17. 17.
    Whitaker, R., Breen, D.: Level-set models for the deformation of solid object. In: Third International Workshop on Implicit Surfaces, pp. 19–35 (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • C. Samir
    • 1
  • P. Van Dooren
    • 1
  • D. Laurent
    • 1
  • K. A. Gallivan
    • 2
  • P. -A. Absil
    • 1
  1. 1.Dept of Mathematical EngineeringUniversité catholique de LouvainBelgium
  2. 2.Dept of MathematicsFlorida State UniversityTallahasseeUSA

Personalised recommendations