Automated Multimodal Biometrics Using Face and Ear

  • Lorenzo Luciano
  • Adam Krzyżak
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5627)


In this paper, we present an automated multimodal biometric system for the detection and recognition of humans using face and ear as input. The system is totally automated, with a trained detection system for face and for ear. We look at individual recognition rates for both face and ear, and then at combined recognition rates, and show that an automated multimodal biometric system achieves significant performance gains. We also discuss methods of combining biometric input and the recognition rates that each achieves.


Face recognition ear recognition multimodal biometrics eigenface eigenear PCA 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Turk, M.A., Pentland, A.P.: Eigenfaces for recognition. Journal of Cognitive Neuroscience 3(1), 71–86 (1991)CrossRefGoogle Scholar
  2. 2.
    Qin, J., He, Z.S.: A SVM face recognition method based on Gabor-featured key points. In: Proc. Fourth Int. Conf. Machine Learning and Cybernetics, pp. 5144–5149 (2005)Google Scholar
  3. 3.
    Belhumer, P.N., Hespanha, J.P., Kriegman, D.J.: Eigenfaces vs. Fisherfaces: recognition using class specific linear projection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 711–720 (1997)Google Scholar
  4. 4.
    Penev, P.S., Atick, J.J.: Local feature analysis: a general statistical theory for object representation. Network: Comput. Neural Syst., 477–500 (1996)Google Scholar
  5. 5.
    Jain, A., Flynn, P., Ross, A.A.: Handbook of Biometrics. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  6. 6.
    Middendorf, C., Bowyer, K.W.: Multibiometrics using face and ear. In: Handbook of Biometrics, pp. 315–341. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  7. 7.
    Chang, K., Bowyer, K., Sarkar, S., Victor, B.: Comparison and Combination of Ear and Face Images in Appearance-Based Biometrics. IEEE Transactions on Pattern Analysis and Machine Intelligence 25(9), 1160–1165 (2003)CrossRefGoogle Scholar
  8. 8.
    Rahman, M.M., Ishikawa, S.: Proposing a passive biometric system for robotic vision. In: Proc. 10th International Symp. on Artificial Life and Robotics (2005)Google Scholar
  9. 9.
  10. 10.
    Viola, P., Jones, M.: Rapid object detection using boosted cascade of simple features. In: Proceedings of IEEE Computer Vision and Pattern Recognition (2001)Google Scholar
  11. 11.
    Lienhart, R., Maydt, J.: An extended set of Haar-like features for rapid object detection. In: Proceedings of IEEE International Conference on Image Processing, pp. 900–903 (2002)Google Scholar
  12. 12.
    Bubeck, U.M., Sanchez, D.: Biometric authentication: Technology and evaluation, Technical Report, San Diego State University (2003)Google Scholar
  13. 13.
    Phillips, P.J., Moon, H., Rizvi, S.A., Rauss, P.J.: The FERET Evaluation Methodology for Face-Recognition Algorithms. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(10), 1090–1104 (2000)CrossRefGoogle Scholar
  14. 14.
    Yuan, L., Mu, Z.-C., Xu, X.-N.: Multimodal recognition based on face and ear. In: International Conference on Wavelet Analysis and Pattern Recognition, ICWAPR 2007, vol. 3(2-4), pp. 1203–1207 (2007)Google Scholar
  15. 15.
    Peer, P.: CVL Face Database,

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Lorenzo Luciano
    • 1
  • Adam Krzyżak
    • 1
  1. 1.Department of Computer Science and Software EngineeringConcordia UniversityMontrealCanada

Personalised recommendations