A Security Analysis of Biometric Template Protection Schemes

  • Xuebing Zhou
  • Stephen D. Wolthusen
  • Christoph Busch
  • Arjan Kuijper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5627)


Biometric features provide considerable usability benefits. At the same time, the inability to revoke templates and likelihood of adversaries being able to capture features raise security concerns. Recently, several template protection mechanisms have been proposed, which provide a one-way mapping of templates onto multiple pseudo-identities.

While these proposed schemes make assumptions common for cryptographic algorithms, the entropy of the template data to be protected is considerably lower per bit of key material used than assumed owing to correlations arising from the biometric features.

We review several template protection schemes and existing attacks followed by a correlation analysis for a selected biometric feature set and demonstrate that these correlations leave the stream cipher mechanism employed vulnerable to, among others, known plaintext-type attacks.


Biometric encryption biometric template protection correlation attacks security analysis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Breebaart, J., Busch, C., Grave, J., Kindt, E.: A reference architecture for biometric template protection based on pseudo identities. In: BIOSIG 2008: Biometrics and Electronic Signatures (2008)Google Scholar
  2. 2.
    Ratha, N.K., Chikkerur, S., Connell, J.H., Bolle, R.M.: Generating cancelable fingerprint templates. IEEE Transactions on Pattern Analysis and Machine Intelligence 29 (April 2007)Google Scholar
  3. 3.
    Roberge, C.S.D., Stoianov, A., Gilroy, R., Kumar, B.V.: Biometric encryption. ICSA Guide to Cryptography, ch. 2 (1999)Google Scholar
  4. 4.
    Jin, A.T.B., Ling, D.N.C., Goh, A.: Biohashing: two factor authentication featuring fingerprint data and tokenised random number. Pattern Recognition Issue 11(37), 2245–2255 (2004)CrossRefGoogle Scholar
  5. 5.
    Monrose, F., Reiter, M.K., Wetze, S.: Password hardening based on keystroke dynamics. International Journal on Information Security 1, 69–83 (2002)CrossRefzbMATHGoogle Scholar
  6. 6.
    Juels, A., Wattenberg, M.: A fuzzy commitment scheme. In: 6th ACM Conference on Computer and Communications Security, pp. 28–36 (1999)Google Scholar
  7. 7.
    Verbitskiy, E., Tuyls, P., Denteneer, D., Linnartz, J.P.: Reliable biometric authentication with privacy protection. In: 24th Benelux Symp. on Info. Theory (2003)Google Scholar
  8. 8.
    Tuyls, P., Goseling, J.: Capacity and examples of template-protecting biometric authentication systems. In: Maltoni, D., Jain, A.K. (eds.) BioAW 2004. LNCS, vol. 3087, pp. 158–170. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  9. 9.
    Uludag, U., Jain, A.: Fuzzy fingerprint vault. In: Workshop: Biometrics: Challenges Arising from Theory to Practice (August 2004),
  10. 10.
    Carter, F., Stoianov, A.: Implications of biometric encryption on wide spread use of biometrics. In: EBF Biometric Encryption Seminar (June 2008)Google Scholar
  11. 11.
    Scheirer, W.J., Boult, T.E.: Cracking fuzzy vaults and biometric encryption. In: Proceedings of the Biometrics Symposium, Baltimore, MD, USA (2007)Google Scholar
  12. 12.
    Adler, A.: Reconstruction of source images from quantized biometric match score data. In: Biometrics Conference, Washington, DC (September 2004)Google Scholar
  13. 13.
    Adler, A.: Vulnerabilities in biometric encryption systems. In: Kanade, T., Jain, A., Ratha, N.K. (eds.) AVBPA 2005. LNCS, vol. 3546, pp. 1100–1109. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  14. 14.
    Johansson, T.: Correlation attacks on stream ciphers and related decoding problems. In: Proceedings of the 1998 Information Theory Workshop, Killarney, Ireland, June 1998, pp. 156–157. IEEE Press, Los Alamitos (1998)Google Scholar
  15. 15.
    Turan, M.S., Donganaksoy, A., Calic, C.: Detailed statistical analysis of synchronous stream ciphers. Technical Report 2006/043, Institute of Applied Mathematics, Middle East Technical University, Ankara, Turkey (2006)Google Scholar
  16. 16.
    Biham, E., Dunkelman, O.: Differential cryptanalysis in stream ciphers. Technical Report CS-2007-10, Department of Computer Science, Technion Israel Institute of Technology, Haifa, Israel (2007)Google Scholar
  17. 17.
    Daugman, J.: The importance of being random: Statistical principles of iris recognition. Pattern Rec. 36, 279–291 (2003)CrossRefGoogle Scholar
  18. 18.
    Hao, F., Anderson, R., Daugman, J.: Combining cryptography with biometrics effectively. Technical Report 640, Univesity of Cambridge, Computer Laboratory (July 2005)Google Scholar
  19. 19.
    Dodis, Y., Reyzin, L., Smith, A.: Fuzzy extractors: How to generate strong keys from biometrics and other noisy data. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 523–540. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  20. 20.
    Zhou, X., Seibert, H., Busch, C., Funk, W.: A 3d face recognition algorithm using histogram-based features. In: Eurographics Workshop on 3D Object Retrieval, Crete, Greece, pp. 65–71 (2008)Google Scholar
  21. 21.
    Zhou, X., Busch, C., Wolthusen, S.: Feature correlation attacks on biometric privacy protection schemes,

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Xuebing Zhou
    • 1
  • Stephen D. Wolthusen
    • 2
    • 3
  • Christoph Busch
    • 2
  • Arjan Kuijper
    • 1
  1. 1.Fraunhofer Institute for Computer Graphic Research IGDDarmstadtGermany
  2. 2.Norwegian Information Security LaboratoryGjøvik University CollegeGjøvikNorway
  3. 3.Information Security Group, Department of MathematicsRoyal Holloway, University of LondonEghamUK

Personalised recommendations