A Swift and Memory Efficient Hough Transform for Systems with Limited Fast Memory

  • Muhammad U. K. Khan
  • Abdul Bais
  • Khawaja M. Yahya
  • Ghulam M. Hassan
  • Rizwana Arshad
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5627)


This paper focuses on implementation of a speedy Hough Transform (HT) which considers the memory constraints of the system. Because of high memory demand, small systems (DSPs, tiny robots) cannot realize efficient implementation of HT. Keeping this scenario in mind, the paper discusses an effective and memory-efficient method of employing the HT for extraction of line features from a gray scale image. We demonstrate the use of a circular buffer for extraction of image edge pixels and store the edge image in a manner that is different from the conventional way. Approximation of the two dimensional Hough Space by a one dimensional array is also discussed. The experimental results reveal that the proposed algorithm produces better results, on small and large systems, at a rapid pace and is economical in terms of memory usage.


Mobile Robot Line Feature Gray Scale Image Synthetic Image Edge Image 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Novak, G., Mahlknecht, S.: TINYPHOON a tiny autonomous mobile robot. In: Proceedings of the IEEE International Symposium on Industrial Electronics, pp. 1533–1538 (June 2005)Google Scholar
  2. 2.
    Dao, N., You, B.J., Oh, S.R., Hwangbo, M.: Visual self-localization for indoor mobile robots using natural lines. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, October 2003, vol. 2, pp. 1252–1257 (2003)Google Scholar
  3. 3.
    Burns, J.B., Hanson, A.R., Riseman, E.M.: Extracting straight lines. IEEE Transactions on Pattern Analysis and Machine Intelligence 8(4), 425–455 (1986)CrossRefGoogle Scholar
  4. 4.
    Guru, D.S., Shekar, B.H., Nagabhushan, P.: A simple and robust line detection algorithm based on small eigenvalue analysis. Pattern Recognition Letters 25(1), 1–13 (2004)CrossRefGoogle Scholar
  5. 5.
    Climer, S., Bhatia, S.K.: Local lines: A linear time line detector. Pattern Recognition Letters 24, 2291–2300 (2003)CrossRefzbMATHGoogle Scholar
  6. 6.
    Kälviäinen, H., Hirvonen, P., Xu, L., Oja, E.: Probabilistic and non-probabilistic hough transforms: Overview and comparisons. Image and Vision Computing 13(4), 239–252 (1995)CrossRefGoogle Scholar
  7. 7.
    Kälviäinen, H., Hirvonen, P.: An extension to the randomized hough transform exploiting connectivity. Pattern Recognition Letters 18(1), 77–85 (1997)CrossRefGoogle Scholar
  8. 8.
    Gatos, B., Perantonis, S.J., Papamarkos, N.: Accelerated hough transform using rectangular image decomposition. Electronic Letters 32(8), 730–732 (1996)CrossRefGoogle Scholar
  9. 9.
    Guil, N., Guil, N., Zapata, E.L.: A parallel pipelined hough transform. In: Fraigniaud, P., Mignotte, A., Robert, Y., Bougé, L. (eds.) Euro-Par 1996. LNCS, vol. 1124, pp. 131–138. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  10. 10.
    Pan, Li, Hamdi: An improved constant-time algorithm for computing the radon and hough transforms on a reconfigurable mesh. IEEETSMC: IEEE Transactions on Systems, Man, and Cybernetics 29 (1999)Google Scholar
  11. 11.
    Bais, A., Khan, M.U.K., Yahya, K.M., Sablatnig, R., Hassan, G.M.: Memory efficient vision based line feature extraction for tiny mobile robots. In: Proceedings of International Conference on Image Analysis and Recognition (ICIAR), July 2009 (to appear)Google Scholar
  12. 12.
    Duda, R., Hart, P.: Use of the Hough transformation to detect lines and curves in the pictures. Communications of the Association for Computing Machinery 15(1), 11–15 (1972)CrossRefzbMATHGoogle Scholar
  13. 13.
    Immerkær, J.: Some remarks on the straight line hough transform. Pattern Recognition Letters 19(12), 1133–1135 (1998)CrossRefzbMATHGoogle Scholar
  14. 14.
    Analog Devices: ADSP-BF537 Blackfin Processor Hardware Reference, Preliminary Revision 1.1 (January 2005)Google Scholar
  15. 15.
    Singleton, R.: A method for computing the fast fourier transform with auxiliary memory and limited high speed storage. IEEE Transaction on Audio and Electroacoustics (15), 91–98 (1967)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Muhammad U. K. Khan
    • 1
  • Abdul Bais
    • 2
  • Khawaja M. Yahya
    • 1
  • Ghulam M. Hassan
    • 1
  • Rizwana Arshad
    • 1
  1. 1.NWFP University of Engineering and TechnologyPeshawarPakistan
  2. 2.Sarhad University of Science and Information TechnologyPeshawarPakistan

Personalised recommendations