Implicit Active-Contouring with MRF

  • Pierre-Marc Jodoin
  • Venkatesh Saligrama
  • Janusz Konrad
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5627)

Abstract

In this paper, we present a new image segmentation method based on energy minimization for iteratively evolving an implicit active contour. Methods for active contour evolution is important in many applications ranging from video post-processing to medical imaging, where a single object must be chosen from a multi-object collection containing objects sharing similar characteristics. Level set methods has played a fundamental role in many of these applications. These methods typically involve minimizing functionals over the infinite-dimensional space of curves and can be quite cumbersome to implement. Developments of markov random field (MRF) based algorithms, ICM and graph-cuts, over the last decade has led to fast, robust and simple implementations. Nevertheless, the main drawback of current MRF methods is that it is intended for global segmentation of objects. We propose a new MRF formulation that combines the computational advantages of MRF methods and enforces active contour evolution. Several advantages of the method include ability to segment colored images into an arbitrary number of classes; single parameter which can control region boundary smoothness; fast, easy implementation, which can handle images with widely varying characteristics.

Keywords

Markovian segmentation active contours 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kass, M., Witkin, A.P., Terzopoulos, D.: Snakes: Active contour models. IJCV 1(4), 321–331 (1988)CrossRefMATHGoogle Scholar
  2. 2.
    Osher Stanley, S.J., Fedkiw, R.P.: Level Set Methods and Dynamic Implicit Surfaces, October 2002. Springer, Heidelberg (2002)MATHGoogle Scholar
  3. 3.
    Paragios, N.: Curve propagation, level set methods and grouping. In: Paragios, N., Chen, Y., Faugeras, O. (eds.) Handbook of Mathematical Models in Computer Vision, ch. 9, pp. 145–159. Springer, Heidelberg (2005)Google Scholar
  4. 4.
    Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. Int. Jour. Comput. Vis. 22(1), 61–79 (1997)CrossRefMATHGoogle Scholar
  5. 5.
    Chan, T., Vese, L.: Active contours without edges. IEEE trans. on Image Proc. 10(2), 266–277 (2001)CrossRefMATHGoogle Scholar
  6. 6.
    Mansouri, A.-R., Mitiche, A., Vázquez, C.: Multiregion competition: a level set extension of region competition to multiple region image partitioning. Comput. Vis. Image Underst. 101(3), 137–150 (2006)CrossRefGoogle Scholar
  7. 7.
    Besag, J.: On the statistical analysis of dirty pictures. J. Roy. Stat. Soc. 48(3), 259–302 (1986)MathSciNetMATHGoogle Scholar
  8. 8.
    Ishikawa, H.: Exact optimization for markov random fields with convex priors. IEEE Trans. Pattern Anal. Mach. Intell. 25(10), 1333–1336 (2003)CrossRefGoogle Scholar
  9. 9.
    Boykov, Y., Funka-Lea, G.: Graph cuts and efficient n-d image segmentation. Int. J. Comput. Vision 70(2), 109–131 (2006)CrossRefGoogle Scholar
  10. 10.
    Blake, A., Rother, C., Brown, M., Perez, P., Torr, P.: Interactive image segmentation using an adaptive GMMRF model. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3021, pp. 428–441. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  11. 11.
    Rother, C., Kolmogorov, V., Blake, A.: ”grabcut”: interactive foreground extraction using iterated graph cuts, pp. 309–314 (2004)Google Scholar
  12. 12.
    Boykov, Y., Jolly, M.-P.: Interactive graph cuts for optimal boundary and region segmentation of objects in n-d images. In: Proc. of International Conference on Computer Vision, vol. 1, pp. 105–112 (2001)Google Scholar
  13. 13.
    Gonzalez, R.C., Woods, R.E.: Digital image processing. Prince Hall (2001)Google Scholar
  14. 14.
    Xu, N., Ahja, N., Bansal, R.: Object segmentation using graph cuts based active contours. CVIU 107(3), 210–224 (2007)Google Scholar
  15. 15.
    Duda, R., Hart, P., Stork, D.: Pattern Classification, 2nd edn. Wiley Interscience, Hoboken (2000)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Pierre-Marc Jodoin
    • 1
  • Venkatesh Saligrama
    • 2
  • Janusz Konrad
    • 2
  1. 1.Département d’informatiqueUniversité de Sherbrooke 2500QcCanada
  2. 2.Department of Electrical and Computer EngineeringBoston UniversityBoston

Personalised recommendations