Advertisement

Efficient Removal of Noisy Borders of Monochromatic Documents

  • Andrei de Araújo Formiga
  • Rafael Dueire Lins
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5627)

Abstract

Very often the digitalization process using automatically fed production line scanners yields monochromatic images framed by a noisy border. This paper presents a pre-processing scheme based on sub sampling which speeds up the border removal process. The technique introduced was tested on over 20,000 images and provided same quality images than the best algorithm in the literature and amongst commercial tools with an average speed-up around 50%.

Keywords

Document Image Analysis Border removal Binary Images 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ávila, B.T., Lins, R.D.: A New Algorithm for Removing Noisy Borders from Monochromatic Documents. In: ACM-SAC 2004, March 2004, pp. 1219–1225 (2004)Google Scholar
  2. 2.
    Ávila, B.T., Lins, R.D.: Efficient removal of noisy borders from monochromatic documents. In: Campilho, A.C., Kamel, M.S. (eds.) ICIAR 2004. LNCS, vol. 3212, pp. 249–256. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  3. 3.
    Baird, H.S.: Document image defect models and their uses. In: 2nd Int. Conf. on Document Analysis and Recognition, Japan, pp. 62–67. IEEE Comp. Soc, Los Alamitos (1993)Google Scholar
  4. 4.
    Berger, M.: Computer Graphics with Pascal. Addison-Wesley, Reading (1986)zbMATHGoogle Scholar
  5. 5.
    Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to algorithms, 2nd edn. MIT Press, Cambridge (2001)zbMATHGoogle Scholar
  6. 6.
    Fan, K.C., Wang, Y.K., Lay, T.R.: Marginal noise removal of document images. Patt. Recog. 35, 2593–2611 (2002)CrossRefzbMATHGoogle Scholar
  7. 7.
    O’Gorman, L., Kasturi, R.: Document Image Analysis, IEEE Computer Society Executive Briefing (1997)Google Scholar
  8. 8.
    Kanungo, T., Haralick, R.M., Phillips, I.: Global and local document degradation models. In: Proc. Snd Int. Conf. Doc. Analysis and Recognition, pp. 730–734 (1993)Google Scholar
  9. 9.
    Le, D.X.: Automated borders detection and adaptive segmentation for binary document images. National Library of Medicine, http://archive.nlm.nih.gov/pubs/le/twocols/twocols.php
  10. 10.
    de Mattos, G.G., Formiga, A.A., Lins, R.D., Martins, F.M.J.: BigBatch: A Document Processing Platform for Clusters and Grids. In: ACM SAC 2008, ACM Press, New York (2008)Google Scholar
  11. 11.
    Shapiro, L.G., Stockman, G.C.: Computer Vision (March 2000), http://www.cse.msu.edu/~stockman/Book/book.html
  12. 12.
    BlackIce Document Imaging SDK 10. BlackIce Software Inc., http://www.blackice.com/
  13. 13.
    ClearImage 5. Inlite Research Inc., http://www.inliteresearch.com
  14. 14.
  15. 15.
    Leadtools 13. Leadtools Inc., http://www.leadtools.com
  16. 16.
    ScanFix Bitonal Image Optimizer 4.21. TMS Sequoia, http://www.tmsinc.com
  17. 17.
    Skyline Tools Corporate Suite 7. Skyline Tools Imaging, http://www.skylinetools.com

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Andrei de Araújo Formiga
    • 1
  • Rafael Dueire Lins
    • 1
  1. 1.Universidade Federal de PernambucoRecifeBrazil

Personalised recommendations