Chemical Fluxes in Cellular Steady States Measured by Fluorescence Correlation Spectroscopy

  • Hong Qian
  • Elliot L. Elson
Part of the Springer Series in Chemical Physics book series (CHEMICAL, volume 96)


Genetically, identical cells adopt phenotypes that have different structures, functions, and metabolic properties. In multi-cellular organisms, for example, tissue-specific phenotypes distinguish muscle cells, liver cells, fibroblasts, and blood cells that differ in biochemical functions, geometric forms, and interactions with extracellular environments. Tissue-specific cells usually have different metabolic functions such as synthesis of distinct spectra of secreted proteins, e.g., by liver or pancreatic cells, or of structural proteins, e.g., muscle vs. epithelial cells. But more importantly, a phenotype should include a dynamic aspect: different phenotypes can have distinctly different dynamic functions such as contraction of muscle cells and locomotion of leukocytes. The phenotypes of differentiated tissue cells are typically stable, but they can respond to changes in external conditions, e.g., as in the hypertrophy of muscle cells in response to extra load [1] or the phenotypic shift of fibroblasts to myofibroblasts as part of the wound healing response [2]. Cells pass through sequences of phenotypes during development and also undergo malignant phenotypic transformations as occur in cancer and heart disease.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P.H. Sugden, Mechanotransduction in cardiomyocyte hypertrophy. Circulation 103(10), 1375–1377 (2001)ADSGoogle Scholar
  2. 2.
    J.J. Tomasek, G. Gabbiani, B. Hinz, C. Chaponnier, R.A. Brown, Myofibroblasts and mechano-regulation of connective tissue remodelling. Nat. Rev. Mol. Cell Biol. 3(5), 349–363 (2002)CrossRefGoogle Scholar
  3. 3.
    J.B. Bassingthwaighte, The modeling for a primitivesustainablecell. Philos. Trans. R. Soc. Lond. A 359, 1055–1072 (2001)MATHCrossRefADSGoogle Scholar
  4. 4.
    H. Qian, Phosphorylation energy hypothesis: open chemical systems and their biological functions. Annu. Rev. Phys. Chem. 58, 113–142 (2007)CrossRefADSGoogle Scholar
  5. 5.
    H. Qian, S. Saffarian, E.L. Elson, Concentration fluctuations in a mesoscopic oscillating chemical reaction system. Proc. Natl. Acad. Sci. U S A 99(16), 10376–10381 (2002)MATHCrossRefMathSciNetADSGoogle Scholar
  6. 6.
    M. Vellela, H. Qian, Stochastic dynamics and non-equilibrium thermodynamics of a bistable chemical system: the Schlogl model revisited. J. R Soc. Interface. (doi:10.1098/rsif.2008.0476) (2008)Google Scholar
  7. 7.
    J. Ansel, H. Bottin, C. Rodriguez-Beltran, C. Damon, M. Nagarajan, S. Fehrmann, J. Francois, G. Yvert, Cell-to-cell stochastic variation in gene expression is a complex genetic trait. PLoS Genet 4(4), e1000049 (2008)Google Scholar
  8. 8.
    P. Ao, D. Galas, L. Hood, X. Zhu, Cancer as robust intrinsic state of endogenous molecular-cellular network shaped by evolution. Med. Hypotheses. 70(3), 678–684 (2008)CrossRefGoogle Scholar
  9. 9.
    C.V. Rao, D.M. Wolf, A.P. Arkin, Control, exploitation and tolerance of intracellular noise. Nature 420(6912), 231–237 (2002)CrossRefADSGoogle Scholar
  10. 10.
    S.A. Kauffman, Metabolic stability and epigenesis in randomly constructed genetic nets. J. Theor. Biol. 22(3), 437–467 (1969)CrossRefGoogle Scholar
  11. 11.
    J.J. Tyson, K. Chen, B. Novak, Network dynamics and cell physiology. Nat. Rev. Mol. Cell Biol. 2(12), 908–916 (2001)CrossRefGoogle Scholar
  12. 12.
    J.J. Tyson, K.C. Chen, B. Novak, Sniffers, buzzers, toggles and blinkers: dynamics of regulatory and signaling pathways in the cell. Curr. Opin. Cell Biol. 15(2), 221–231 (2003)CrossRefGoogle Scholar
  13. 13.
    F. Schlogl, Chemical reaction models for non-equilibrium phase transition. Z. Physik. 253, 147–161 (1972)CrossRefADSGoogle Scholar
  14. 14.
    B. Han, J. Wang, Quantifying robustness and dissipation cost of yeast cell cycle network: the funneled energy landscape perspectives. Biophys. J. 92(11), 3755–3763 (2007)CrossRefADSGoogle Scholar
  15. 15.
    F. Li, T. Long, Y. Lu, Q. Ouyang, C. Tang, The yeast cell-cycle network is robustly designed. Proc. Natl. Acad. Sci. U S A 101(14), 4781–4786 (2004)CrossRefADSGoogle Scholar
  16. 16.
    R. Zhu, A.S. Ribeiro, D. Salahub, S.A. Kauffman, Studying genetic regulatory networks at the molecular level: delayed reaction stochastic models. J. Theor. Biol. 246(4), 725–745 (2007)CrossRefMathSciNetGoogle Scholar
  17. 17.
    K.C. Chen, L. Calzone, A. Csikasz-Nagy, F.R. Cross, B. Novak, J.J. Tyson,Integrative analysis of cell cycle control in budding yeast. Mol. Biol. Cell 15(8), 3841–3862 (2004)CrossRefGoogle Scholar
  18. 18.
    A. Ciliberto, B. Novak, J.J. Tyson,Mathematical model of the morphogenesis checkpoint in budding yeast. J. Cell Biol. 163(6), 1243–1254 (2003)CrossRefGoogle Scholar
  19. 19.
    H.H. McAdams, A. Arkin, Stochastic mechanisms in gene expression. Proc. Natl. Acad. Sci. U S A 94(3), 814–819 (1997)CrossRefADSGoogle Scholar
  20. 20.
    E.M. Ozbudak, M. Thattai, I. Kurtser, A.D. Grossman, A. van Oudenaarden, Regulation of noise in the expression of a single gene. Nat. Genet. 31(1), 69–73 (2002)CrossRefGoogle Scholar
  21. 21.
    J. Yu, J. Xiao, X. Ren, K. Lao, X.S. Xie, Probing gene expression in live cells, one protein molecule at a time. Science 311(5767), 1600–1603 (2006)CrossRefADSGoogle Scholar
  22. 22.
    M.B. Elowitz, A.J. Levine, E.D. Siggia, P.S. Swain, Stochastic gene expression in a single cell. Science 297(5584), 1183–1186 (2002)CrossRefADSGoogle Scholar
  23. 23.
    D.A. Beard, H. Qian, Chemical Biophysics: Quantitative Analysis of Cellular Systems (Cambridge University Press, New York, 2008)MATHGoogle Scholar
  24. 24.
    H. Qian, E.L. Elson, Fluorescence correlation spectroscopy with high-order and dual-color correlation to probe nonequilibrium steady states. Proc. Natl. Acad. Sci. U S A 101(9), 2828–2833 (2004)CrossRefADSGoogle Scholar
  25. 25.
    E. Elson, D. Magde, Fluorescence correlation spectroscopy. I. conceptual basis and theory. Biopolymers 13, 1–27 (1974)Google Scholar
  26. 26.
    D. Magde, E.L. Elson, W.W. Webb, Thermodynamic fluctuations in a reacting system – measurement by fluorescence correlation spectroscopy. Phys. Rev. Lett. 29, 705–708 (1972)CrossRefADSGoogle Scholar
  27. 27.
    D. Magde, E.L. Elson, W.W. Webb, Fluorescence correlation spectroscopy. II. An experimental realization. Biopolymers 13(1), 29–61 (1974)CrossRefGoogle Scholar
  28. 28.
    T.L. Chew, W.A. Wolf, P.J. Gallagher, F. Matsumura, R.L. Chisholm,A fluorescent resonant energy transfer-based biosensor reveals transient and regional myosin light chain kinase activation in lamella and cleavage furrows. J. Cell Biol. 156(3), 543–553 (2002)CrossRefGoogle Scholar
  29. 29.
    E. Isotani, G. Zhi, K.S. Lau, J. Huang, Y. Mizuno, A. Persechini, R. Geguchadze, K.E. Kamm, J.T. Stull, Real-time evaluation of myosin light chain kinase activation in smooth muscle tissues from a transgenic calmodulin-biosensor mouse. Proc. Natl. Acad. Sci. U S A 101(16), 6279–6284 (2004)CrossRefADSGoogle Scholar
  30. 30.
    A. Miyawaki, J. Llopis, R. Heim, J.M. McCaffery, J.A. Adams, M. Ikura, R.Y. Tsien, Fluorescent indicators for Ca2 + based on green fluorescent proteins and calmodulin. Nature 388(6645), 882–887 (1997)CrossRefADSGoogle Scholar
  31. 31.
    A. Fujioka, K. Terai, R.E. Itoh, K. Aoki, T. Nakamura, S. Kuroda, E. Nishida, M. Matsuda, Dynamics of the Ras/ERK MAPK cascade as monitored by fluorescent probes. J. Biol. Chem. 281(13), 8917–8926 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Hong Qian
    • 1
  • Elliot L. Elson
    • 2
  1. 1.Department of Applied MathematicsUniversity of WashingtonSeattleUSA
  2. 2.Department of Biochemistry and Molecular BiophysicsWashington UniversitySt. LouisUSA

Personalised recommendations