Single-Molecule Protein Conformational Dynamics in Enzymatic Reactions

Chapter

Summary

Enzymes involve many critical biological processes, and for some extends, the biological clock of a living cell is often regulated by enzymatic reactions. An enzymatic reaction involves active substrate–enzyme complex formation, chemical transformation, and product releasing, as we know of the Mechalis–Menten mechanism. Enzymes can change the biological reaction pathways and accelerate the reaction rate by thousands and even millions of times. It is the enzyme–substrate interaction and complex formation that play a critical role in defining the enzymatic reaction landscape, including reaction potential surface, transition states of chemical transformation, and oscillatory reaction pathways. Subtle conformational changes play a crucial role in enzyme functions, and these protein conformations are highly dynamic rather than being static. Using only a static structural characterization, from an ensemble-averaged measurement at equilibrium is often inadequate in predicting dynamic conformations and understanding correlated enzyme functions in real time involving in nonequilibrium, multiple-step, multiple-conformation complex chemical interactions and transformations.

Single-molecule assays have revealed static [1, 2, 3, 4, 5] and dynamic [3, 4, 5] disorders in enzymatic reactions by probing co-enzyme redox state turnovers [3] and enzymatic reaction product formation in real time [4, 5]. Static and dynamic disorders [6, 7, 8, 9, 10] are, respectively, the static rate inhomogeneities between molecules and the dynamic rate fluctuations for individual molecules. Dynamic disorder, which is not distinguishable from static disorder in an ensemble-averaged measurement, has been attributed to protein conformational fluctuations [3, 4, 5, 11]. The protein conformational motions at the enzyme active site, which include enzyme–substrate complex formation, enzymatic reaction turnovers, and product releasing, are mostly responsible for the inhomogeneities in enzymatic reactions [3, 4, 5]. Consequently, direct observations of conformational changes along enzymatic reaction coordinates are often crucial for understanding inhomogeneities in enzymatic reaction systems [12].

We have applied single-molecule spectroscopy and imaging to study complex enzymatic reaction dynamics and the enzyme conformational changes, focusing on the T4 lysozyme enzymatic hydrolyzation of the polysaccharide walls of Escherichia coli B cells. By attaching a donor–acceptor pair of dye molecules site-specifically to noninterfering sites on the enzyme, we were able to measure the hinge-bending conformational motions of the active enzyme by monitoring the donor–acceptor emission intensity as a function of time. We have also explored a combined approach, applying molecular dynamics (MD) simulation and a random-walk model based on the single-molecule experimental data. Using this approach, we analyzed enzyme–substrate complex formation dynamics to reveal (1) multiple intermediate conformational states, (2) oscillatory conformational motions, and (3) a conformational memory effect in the chemical reaction process [13]. Moving forward to study enzymatic dynamics and enzyme conformational dynamics in living cells, we have developed a single-molecule enzyme delivery approach to place an enzyme specifically to an enzymatic reaction site on a cell membrane.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Q.F. Xue, E.S. Yeung, Nature 373, 681 (1995)CrossRefADSGoogle Scholar
  2. 2.
    D.B. Craig, E.A. Arriaga, J.C.Y. Wong, H. Lu, N.J. Dovichi, J. Am. Chem. Soc. 118, 5245 (1996)CrossRefGoogle Scholar
  3. 3.
    H.P. Lu, L.Y. Xun, X.S. Xie, Science 282, 1877 (1998); X.S. Xie, H.P. Lu, J. Biol. Chem. 274, 15967 (1999)Google Scholar
  4. 4.
    B.P. English, W. Min, A.M. van Oijen, K.T. Lee, G. Luo, H. Sun, B.J. Cherayil, S.C. Kou, X.S. Xie, Nat. Chem. Bio. 2, 87 (2006)CrossRefGoogle Scholar
  5. 5.
    L. Edman, R. Rigler, Proc. Natl. Acad. Sci. USA 97, 8266 (2000); H. Lerch, R. Rigler, A. Mikhailov, Proc. Natl. Acad. Sci. USA 102, 10807 (2005)Google Scholar
  6. 6.
    R. Zwanzig, Accounts Chem. Res. 23, 148 (1990)CrossRefGoogle Scholar
  7. 7.
    J. Wang, P. Wolynes, Phys. Rev. Lett. 74, 4317 (1995)CrossRefADSGoogle Scholar
  8. 8.
    G.K. Schenter, H.P. Lu, X.S. Xie, J. Phys. Chem. A 103, 10477 (1999)CrossRefGoogle Scholar
  9. 9.
    N. Agmon, J. Phys. Chem. B 104, 7830 (2000)CrossRefGoogle Scholar
  10. 10.
    H.P. Lu, L.M. Iakoucheva, E.J. Ackerman, J. Am. Chem. Soc. 123, 9184 (2001)CrossRefGoogle Scholar
  11. 11.
    A.M. van Oijen, P.C. Blainey, D.J. Crampton, C.C. Richardson, T. Ellenberger, X.S. Xie, Science 301, 1235 (2003)CrossRefADSGoogle Scholar
  12. 12.
    Y. Chen, D. Hu, E.R. Vorpagel, H.P. Lu, J. Phys. Chem. B 107, 7947 (2003)CrossRefGoogle Scholar
  13. 13.
    Part of the text appeared in a review article, Curr Pharm Biotech, 5, 261 (2004)Google Scholar
  14. 14.
    B.W. Matthews, Adv. Protein Chem. 46, 249 (1995)CrossRefGoogle Scholar
  15. 15.
    X.J. Zhang, J.A. Wozniak, B.W. Matthews, J. Mol. Biol. 250, 527 (1995)CrossRefGoogle Scholar
  16. 16.
    H.R. Faber, B.W. Matthews, Nature 348, 263 (1990)CrossRefADSGoogle Scholar
  17. 17.
    R. Kuroki, L.H. Weaver, B.W. Matthews, Science 262, 2030 (1993)CrossRefADSGoogle Scholar
  18. 18.
    G.E. Arnold, R.L. Ornstein, Biopolymers 41, 533 (1997)CrossRefGoogle Scholar
  19. 19.
    S. Weiss, Science 283, 1676 (1999)CrossRefADSGoogle Scholar
  20. 20.
    M. Bohmer, F. Pampaloni, M. Wahl, H. Rahn, R. Erdmann, J. Enderlein, Rev. Sci. Instrum. 72, 4145 (2001)CrossRefADSGoogle Scholar
  21. 21.
    J.R. Fries, L. Brand, C. Eggeling, M. Kollner, C.A.M. Seidel, J. Phys. Chem. 102, 6601 (1998)Google Scholar
  22. 22.
    D. Hu, H.P. Lu, J. Phys. Chem. B 107, 618 (2003)CrossRefGoogle Scholar
  23. 23.
    A. Tsugita, M. Inouye, E. Terzaghi, G. Streisinger, J. Biol. Chem. 243, 391 (1968)Google Scholar
  24. 24.
    I. Oppenheim, K.E. Shuler, G.H. Weiss, Stochastic Processes in Chemical Physics: The Master Equation (MIT, Cambridge, MA, 1977)Google Scholar
  25. 25.
    M. Vergeles, G. Szamel, J. Chem. Phys. 110, 6827 (1999)CrossRefADSGoogle Scholar
  26. 26.
    J.E. Straub, M. Brokovec, B.J. Berne, J. Phys. Chem. 91, 4995 (1987)CrossRefGoogle Scholar
  27. 27.
    D. Chandler, Introduction to Modern Statistical Mechanics (Oxford University Press, Oxford, 1987)Google Scholar
  28. 28.
    D. Hu, H.P. Lu, Biophys. J. 87, 656 (2004)CrossRefADSGoogle Scholar
  29. 29.
    (a) A. Ishijima, H. Kojima, T. Funatsu, M. Tokunaga, H. Higuchi, H. Tanaka, T. Yanagida, Cell 92, 161 (1998); (b) H. Noji, R. Yasuda, M. Yoshida, K. Kinosita, Nature 386, 299 (1997)Google Scholar
  30. 30.
    T.J. Ha, A.Y. Ting, J. Liang, W.B. Caldwell, A.A. Deniz, D.S. Chemla, P.G. Schultz, S. Weiss, Proc. Natl. Acad. Sci. USA 96, 893 (1999)CrossRefADSGoogle Scholar
  31. 31.
    M. Bates, B. Huang, G.T. Dempsey, X.W. Zhuang, Science 317, 1749 (2007)CrossRefADSGoogle Scholar
  32. 32.
    S. Hohng, C. Joo, T. Ha, Biophys. J. 87, 1328 (2004)CrossRefADSGoogle Scholar
  33. 33.
    N.K. Lee, et al., Biophys. J. 92, 303 (2007)CrossRefADSGoogle Scholar
  34. 34.
    H. Frauenfelder, S.G. Sligar, P.G. Wolyne, Science 254, 1598 (1991)CrossRefADSGoogle Scholar
  35. 35.
    C. Frieden, L.W. Nichol, Protein-Protein Interactions (Wiley, New York, 1981)Google Scholar
  36. 36.
    J.N. Forkey, M.E. Quinlan, Y.E. Goldman, Prog. Biophys. Mol. Biol. 74, 1 (2000)CrossRefGoogle Scholar
  37. 37.
    E.J.G. Peterman, H. Sosa, L.S.B. Goldstein, W.E. Moerner, Biophys. J. 81, 2851 (2001)CrossRefGoogle Scholar
  38. 38.
    R.Y. Tsien, A. Miyawaki, Science 280, 1954 (1998); R.Y. Tsien, Annu. Rev. Biochem. 67, 509 (1998)Google Scholar
  39. 39.
    R. Liu, D. Hu, X. Tan, H.P. Lu, J. Am. Chem. Soc. 128, 10034 (2006)CrossRefGoogle Scholar
  40. 40.
    X. Tan, D. Hu, T.C. Squier, H.P. Lu, Appl. Phys. Lett. 85, 2420 (2004)CrossRefADSGoogle Scholar
  41. 41.
    H.P. Lu, Acc. Chem. Res. 38, 557–565 (2005)CrossRefGoogle Scholar
  42. 42.
    Y. Wang, H.P. Lu, SubmittedGoogle Scholar
  43. 43.
    (a) I. Prigogine, The End of Certainty, Time, Chaos, and the New Laws of Nature (Fress Press, New York, 1997) (b) G. Nicolis, I. Prigogine, Exploring Complexity (W. H. Freeman, New York, 1989)Google Scholar
  44. 44.
    M.O. Vlad, J. Ross, Analysis of experimental observables and oscillations in single-molecule kinetics, The theory and evaluation of single-molecule signals, ed. by E. Barki, F. Brown, M. Orrit, H. Yang (World Scientific, New Jersey, 2008)Google Scholar
  45. 45.
    B. Ma, S. Kumar, C.J. Tsai, R. Nussinov, Protein Eng. Des. Sel. 12, 713 (1999); O.F. Lange, et al., Science 320, 1471 (2008)Google Scholar
  46. 46.
    D.E. Koshland, Proc. Natl. Acad. Sci. U.S.A. 44, 98 (1958)CrossRefADSGoogle Scholar
  47. 47.
    R. Grunberg, J. Leckner, M. Nilges, Structure 12, 2125 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Department of Chemistry Center for Photochemical SciencesBowling Green State UniversityBowling GreenUSA

Personalised recommendations