Size-Minimized Quantum Dots for Molecular and Cellular Imaging

  • Andrew M. Smith
  • Mary M. Wen
  • May D. Wang
  • Shuming Nie
Chapter
Part of the Springer Series in Chemical Physics book series (CHEMICAL, volume 96)

Summary

Semiconductor quantum dots, tiny light-emitting particles on thenanometer scale, are emerging as a new class of fluorescent labels for a broad range of molecular and cellular applications. In comparison with organic dyes and fluorescent proteins, they have unique optical and electronic properties such as size-tunable light emission, intense signal brightness, resistance to photobleaching, and broadband absorption for simultaneous excitation of multiple fluorescence colors. Here we report new advances in minimizing the hydrodynamic sizes of quantum dots using multidentate and multifunctional polymer coatings. A key finding is that a linear polymer containing grafted amine and thiol coordinating groups can coat nanocrystals and lead to a highly compact size, exceptional colloidal stability, strong resistance to photobleaching, and high fluorescence quantum yields. This has allowed a new generation of bright and stable quantum dots with small hydrodynamic diameters between 5.6 and 9.7 nm with tunable fluorescence emission from the visible (515 nm) to the near infrared (720 nm). These quantum dots are well suited for molecular and cellular imaging applications in which the nanoparticle hydrodynamic size needs to be minimized. Together with the novel properties of new strain-tunable quantum dots, these findings will be especially useful for multicolor and super-resolution imaging at the single-molecule level.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A.M. Smith, S.M. Nie, J. Am. Chem. Soc. 130, 11278–11279 (2008)CrossRefGoogle Scholar
  2. 2.
    H.S. Choi, W. Liu, P. Misra, E. Tanaka, J.P. Zimmer, B.I. Ipe, M.G. Bawendi, J.V. Frangioni, Nat. Biotechnol. 25, 1165–1170 (2007)CrossRefGoogle Scholar
  3. 3.
    W.H. Liu, H.S. Choi, J.P. Zimmer, E. Tanaka, J.V. Frangioni, M. Bawendi, J. Am. Chem. Soc. 129, 14530–14531 (2007)CrossRefGoogle Scholar
  4. 4.
    J.P. Zimmer, S.W. Kim, S. Ohnishi, E. Tanaka, J.V. Frangioni, M.G. Bawendi, J. Am. Chem. Soc. 128, 2526–2527 (2006)CrossRefGoogle Scholar
  5. 5.
    T. Pellegrino, L. Manna, S. Kudera, T. Liedl, D. Koktysh, A.L. Rogach, S. Keller, J. Radler, G. Natile, W.J. Parak, Nano Lett. 4, 703–707 (2004)CrossRefADSGoogle Scholar
  6. 6.
    T. Pons, H.T. Uyeda, I.L. Medintz, H. Mattoussi, J. Phys. Chem. B. 110, 20308–20316 (2006)CrossRefGoogle Scholar
  7. 7.
    A.M. Smith, H.W. Duan, M.N. Rhyner, G. Ruan, S.M. Nie, Phys. Chem. Chem. Phys. 8, 3895–3903 (2006)CrossRefGoogle Scholar
  8. 8.
    A.M. Smith, H.W. Duan, A.M. Mohs, S.M. Nie, Adv. Drug Delivery Rev. 60, 1226–1240 (2008)CrossRefGoogle Scholar
  9. 9.
    I.L. Medintz, H.T. Uyeda, E.R. Goldman, H. Mattoussi, Nat. Mater. 4, 435–446 (2005)CrossRefADSGoogle Scholar
  10. 10.
    W.C.W. Chan, D.J. Maxwell, X.H. Gao, R.E. Bailey, M.Y. Han, S.M. Nie, Curr. Opin. Biotechnol. 13, 40–46 (2002)CrossRefGoogle Scholar
  11. 11.
    A.P. Alivisatos, Nat. Biotechnol. 22, 47–52 (2004)CrossRefGoogle Scholar
  12. 12.
    W. Liu, M. Howarth, A.B. Greytak, Y. Zheng, D.G. Nocera, A.Y. Ting, M.G. Bawendi, J. Am. Chem. Soc. 130, 1274–1284 (2008)CrossRefGoogle Scholar
  13. 13.
    M. Howarth, W.H. Liu, S. Puthenveetil, Y. Zheng, L.F. Marshall, M.M. Schmidt, D.K. Wittrup, M. Bawendi, A.Y. Ting, Nat. Methods 5, 397–399 (2008)CrossRefGoogle Scholar
  14. 14.
    S.W. Kim, S. Kim, J.B. Tracy, A. Jasanoff, M.G. Bawendi, J. Am. Chem. Soc. 127, 4556–4557 (2005)CrossRefGoogle Scholar
  15. 15.
    S. Kim, M. Bawendi, J. Am. Chem. Soc. 125, 14652–14653 (2003)CrossRefGoogle Scholar
  16. 16.
    W. Guo, J.J. Li, Y.A. Wang, X.G. Peng, J. Am. Chem. Soc. 125, 3901–3909 (2003)CrossRefGoogle Scholar
  17. 17.
    F. Dubois, B. Mahler, B. Dubertret, E. Doris, C. Mioskowski, J. Am. Chem. Soc. 129, 482–483 (2007)CrossRefGoogle Scholar
  18. 18.
    K. Susumu, H.T. Uyeda, I.L. Medintz, T. Pons, J.B. Delehanty, H. Mattoussi, J. Am. Chem. Soc. 129, 13987–13996 (2007)CrossRefGoogle Scholar
  19. 19.
    I. Nabiev et al., Nano Lett. 7, 3452–3461 (2007)CrossRefADSGoogle Scholar
  20. 20.
    J. Lovric, H.S. Bazzi, Y. Cuie, G.R.A. Fortin, F.M. Winnik, D. Maysinger, J. Mol. Med. 83, 377–385 (2005)Google Scholar
  21. 21.
    A.L. Rogach, T. Franzl, T.A. Klar, J. Feldmann, N. Gaponik, V. Lesnyak, A. Shavel, A. Eychmuller, Y.P. Rakovich, J.F. Donegan, J. Phys. Chem. C 111, 14628–14637 (2007)Google Scholar
  22. 22.
    X.S. Wang, T.E. Dykstra, M.R. Salvador, I. Manners, G.D. Scholes, M.A. Winnik, J. Am. Chem. Soc. 126, 7784–7785 (2004)CrossRefGoogle Scholar
  23. 23.
    M.F. Wang, N. Felorzabihi, G. Guerin, J.C. Haley, G.D. Scholes, M.A. Winnik, Macromolecules 40, 6377–6384 (2007)CrossRefADSGoogle Scholar
  24. 24.
    A.K. Chakraborty, A.J. Golumbfskie, Annu. Rev. Phys. Chem. 52, 537–573 (2001)CrossRefADSGoogle Scholar
  25. 25.
    S.T. Hess, T.P. Girirajan, M.D. Mason, Biophys. J. 91, 4258–4272 (2006)CrossRefADSGoogle Scholar
  26. 26.
    M.J. Rust, M. Bates, X.W. Zhuang, Nat. Methods. 3, 793–795 (2006).CrossRefGoogle Scholar
  27. 27.
    X. Michalet, S. Weiss, Proc. Natl. Acad. Sci. USA. 103, 4797–4798 (2006)CrossRefADSGoogle Scholar
  28. 28.
    E. Betzig, G.H. Patterson, R. Sougrat, O.W. Lindwasser, S. Olenych, J.S. Bonifacino, M.W. Davidson, J. Lippincott-Schwartz, H.F. Hess, Science 313, 1642–1645 (2006)CrossRefADSGoogle Scholar
  29. 29.
    K.I. Willig, R.R. Kellner, R. Medda, B. Hein, S. Jakobs, S.W. Hell, Nat. Methods 3, 721–723 (2006)CrossRefGoogle Scholar
  30. 30.
    K.I. Willig, S.O. Rizzoli, V. Westphal, R. Jahn, S.W. Hell, Nature 440, 935–939 (2006).CrossRefADSGoogle Scholar
  31. 31.
    G. Donnert, J. Keller, R. Medda, M.A. Andrei, S.O. Rizzoli, R. Luhrmann, R. Jahn, C. Eggeling, S.W. Hell, Proc. Natl. Acad. Sci. USA. 103, 11440–11445 (2006)CrossRefADSGoogle Scholar
  32. 32.
    A. Agrawal, R. Deo, G.D. Wang, M.D. Wang, S.M. Nie, Proc. Natl. Acad. Sci. USA. 105, 3298–3303 (2008)CrossRefADSGoogle Scholar
  33. 33.
    T.D. Lacoste, X. Michalet, F. Pinaud, D.S. Chemla, A.P. Alivisatos, S. Weiss, Proc. Natl. Acad. Sci. USA. 97, 9461–9466 (2000)CrossRefADSGoogle Scholar
  34. 34.
    A.M. Smith, A.M. Mohs, S.M. Nie, Nat. Nanotechnol. in pressGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Andrew M. Smith
    • 1
  • Mary M. Wen
    • 1
  • May D. Wang
    • 2
  • Shuming Nie
    • 1
  1. 1.Departments of Biomedical Engineering and ChemistryEmory University and Georgia Institute of TechnologyAtlantaUSA
  2. 2.Departments of Biomedical EngineeringGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations