A Novel Visualization Tool for Evaluating Medication Side-Effects in Multi-drug Regimens

  • Jon Duke
  • Anthony Faiola
  • Hadi Kharrazi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5613)


The evaluation and management of medication side-effects is a common and complex task for physicians. Information visualization has the potential to increase the efficiency and reduce the cognitive load involved in this process. We describe the design and development of Rxplore, a novel tool for assessing medication side-effects. Rxplore supports simultaneous lookup of multiple medications and an intuitive visual representation of query results. In a pilot study of Rxplore’s usability and utility, physicians rated the system highly for efficiency, intuitiveness, and clinical value.


information visualization medical informatics adverse reactions medications side-effects 


  1. 1.
    Lazarou, J., Pomeranz, B.H., Corey, P.N.: Incidence of Adverse Drug Reactions in Hospitalized Patients: A Meta-analysis of Prospective Studies. JAMA 279, 1200–1205 (1998)CrossRefGoogle Scholar
  2. 2.
    Ernst, F.R., Grizzle, A.J.: Drug-related morbidity and mortality: updating the cost-of-illness model. J. Am. Pharm. Assoc. 41, 192–199 (2001)CrossRefGoogle Scholar
  3. 3.
  4. 4.
    Veehof, L.J.G., et al.: Adverse drug reactions and polypharmacy in the elderly in general practice. European Journal of Clinical Pharmacology 55, 533–536 (1999)CrossRefGoogle Scholar
  5. 5.
    Kaufman, D.W., et al.: Recent Patterns of Medication Use in the Ambulatory Adult Population of the United States: The Slone Survey. JAMA 287, 337–344 (2002)CrossRefGoogle Scholar
  6. 6.
    Voigt, R.: An Extended Scatterplot Matrix and Case Studies in Information Visualization. Published as Diplomarbeit (2002),
  7. 7.
    Heer, J., Card, S., Landay, J.P.: A Toolkit for Interactive Information Visualization. In: Proceeding of the ACM Conference on Human Factors in Computing Systems, pp. 421–430 (2005)Google Scholar
  8. 8.
    Thomas, J.J., Cook, K.A.: Illuminating the Path. 200 (2005)Google Scholar
  9. 9.
    Card, S.K., Mackinlay, J.D., Shneiderman, B.: Readings in Information Visualization 686 (1999)Google Scholar
  10. 10.
    Scaife, M., et al.: External Cognition: How Do Graphical Representations Work. International Journal of Human-Computer Studies 45, 185–213 (1996)CrossRefGoogle Scholar
  11. 11.
    Rogers, Y.: New theoretical approaches for human-computer interaction. Annual Review of Information Science and Technology 38, 87–143 (2004)CrossRefGoogle Scholar
  12. 12.
    Norman, D.A.: The Design of Everyday Things 257 (1990)Google Scholar
  13. 13.
    Norman, D.A., Draper, S.W.: User Centered System Design 526 (1986)Google Scholar
  14. 14.
    Gregg, L.W., Bower, G.H., University, C.: Cognition in Learning and Memory, pp. 51–88 (1972)Google Scholar
  15. 15.
    Holzinger, A.: HCI and Usability for Medicine and Health Care 458 (2007)Google Scholar
  16. 16.
    Workman, M., Lesser, M.F., Kim, J.: An Exploratory Study of Cognitive Load in Diagnosing Patient Conditions. Int. J. Qual. Health Care 19, 127–133 (2007)CrossRefGoogle Scholar
  17. 17.
    Shachak, A., et al.: Primary Care Physicians’ Use of an Electronic Medical Record System: A Cognitive Task Analysis. J. Gen. Intern. Med. (2009)Google Scholar
  18. 18.
    Stoicu-Tivadar, L., Stoicu-Tivadar, V.: Human-Computer Interaction Reflected in the Design of User Interfaces for General Practitioners. International Journal of Medical Informatics 75, 335–342 (2006)CrossRefGoogle Scholar
  19. 19.
    Wenkebach, U., Pollwein, B., Finsterer, U.: Visualization of Large Datasets in Intensive Care. In: Proc. Annu. Symp. Comput. Appl. Med. Care, pp. 18–22 (1992)Google Scholar
  20. 20.
    Shahar, Y., Cheng, C.: Intelligent visualization and exploration of time-oriented clinical data. Top Health Inf Manage 20, 15–31 (1999)Google Scholar
  21. 21.
    Plaisant, C., Mushlin, R., Snyder, A., Li, J., Heller, D., Shneiderman, B.: LifeLines: Using Visualization to Enhance Navigation and Analysis of Patient Records. In: Proc. AMIA Symp., pp. 76–80 (1998)Google Scholar
  22. 22.
    Wroe, C.J., Solomon, W.D., Rector, A.L., Rogers, J.: Dopamine: A Tool for Visualizing Clinical Properties of Generic Drugs. In: Lavrac, B.K.N., Miksch, S. (eds.) International Workshop on Intelligent Data Analysis in Medicine and Pharmacology. The Fifth Workshop on Intelligent Data Analysis in Medicine and Pharmacology (2000)Google Scholar
  23. 23.
    Lamy, J., Venot, A., Bar-Hen, A., Ouvrard, P., Duclos, C.: Design of a Graphical and Interactive Interface for Facilitating Access to Drug Contraindications, Cautions for Use, Interactions and Adverse Effects. BMC Medical Informatics and Decision Making 8, 21 (2008)CrossRefGoogle Scholar
  24. 24.
    Berner, E.S., et al.: Improving Ambulatory Prescribing Safety with a Handheld Decision Support System: A Randomized Controlled Trial. J. Am. Med. Inform. Assoc. 13, 171–179 (2006)CrossRefGoogle Scholar
  25. 25.
    Wilcox, R.A., Whitham, E.M.: Reduction of Medical Error at the Point-of-Care Using Electronic Clinical Information Delivery. Internal Medicine Journal 33, 537–540 (2003)CrossRefGoogle Scholar
  26. 26.
    Quantcast UpToDate Profile,
  27. 27.
    Quantcast Epocrates Profile,

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Jon Duke
    • 1
    • 2
  • Anthony Faiola
    • 1
  • Hadi Kharrazi
    • 1
  1. 1.School of InformaticsIndiana University Purdue University IndianapolisIndianaUSA
  2. 2.Regenstrief InstituteMedical Informatics, HITS 2000IndianapolisUSA

Personalised recommendations