Advertisement

Ensemble SWLDA Classifiers for the P300 Speller

  • Garett D. Johnson
  • Dean J. Krusienski
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5611)

Abstract

The P300 Speller has proven to be an effective paradigm for brain-computer interface (BCI) communication. Using this paradigm, studies have shown that a simple linear classifier can perform as well as more complex nonlinear classifiers. Several studies have examined methods such as Fisher’s Linear Discriminant (FLD), Stepwise Linear Discriminant Analysis (SWLDA), and Support Vector Machines (SVM) for training a linear classifier in this context. Overall, the results indicate marginal performance differences between classifiers trained using these methods. It has been shown that, by using an ensemble of linear classifiers trained on independent data, performance can be further improved because this scheme can better compensate for response variability. The present study evaluates several offline implementations of ensemble SWLDA classifiers for the P300 speller and compares the results to a single SWLDA classifier for seven able-bodied subjects.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Blankertz, B., Müller, K.R., Krusienski, D.J., Schalk, G., Wolpaw, J.R., Schlögl, A., Pfurtscheller, G., Millán, J.R., Schröder, M., Birbaumer, N.: The BCI Competition III: Validating Alternative Approaches to Actual BCI Problems. IEEE Transactions on Neural Systems and Rehabilitation Engineering 14(2) (2006)Google Scholar
  2. 2.
    Bostanov, V.: BCI competition 2003-data sets Ib and IIb: feature extraction from event-related brain potentials with the continuous wavelet transform and the t-value scalogram. IEEE Trans. Biomed. Eng. 51, 1057–1061 (2004)CrossRefGoogle Scholar
  3. 3.
    Draper, N., Smith, H.: Applied Regression Analysis, 2nd edn., pp. 307–312. John Wiley and Sons, Chichester (1981)MATHGoogle Scholar
  4. 4.
    Fabiani, M., Gratton, G., Karis, D., Donchin, E.: Definition, identification, and reliability of measurement of the P300 component of the event-related brain potential. Advances in Psychophysiology 2, 1–78 (1987)Google Scholar
  5. 5.
    Farwell, L.A., Donchin, E.: Talking off the top of your head: Toward a mental prosthesis utilizing event-related brain potentials. Electroenceph. clin. Neurophysiol. 70, 510–523 (1988)CrossRefGoogle Scholar
  6. 6.
    Kaper, M., Meinicke, P., Grossekathoefer, U., Lingner, T., Ritter, H.: BCI competition 2003-data set IIb: Support vector machines for the P300 speller paradigm. IEEE Trans. Biomed. Eng. 51, 1073–1076 (2004)CrossRefGoogle Scholar
  7. 7.
    Krusienski, D.J., Sellers, E.W., McFarland, D.J., Vaughan, T.V., Wolpaw, J.R.: Toward Enhanced P300 Speller Performance. Journal of Neuroscience Methods 167, 15–21 (2008)CrossRefGoogle Scholar
  8. 8.
    Krusienski, D.J., Sellers, E.W., Cabestaing, F., Bayoudh, S., McFarland, D.J., Vaughan, T.M., Wolpaw, J.R.: A Comparison of Classification Techniques for the P300 Speller. Journal of Neural Engineering 3, 299–305 (2006)CrossRefGoogle Scholar
  9. 9.
    Nijboer, F., Sellers, E.W., Mellinger, J., Jordan, M.A., Matuz, T., Furdea, A., Mochty, U., Krusienski, D.J., Vaughan, T.M., Wolpaw, J.R., Kubler, A.: A Brain-Computer Interface (BCI) for People with Amyotrophic Lateral Sclerosis (ALS). Clinical Neurophysiology 119, 1909–1916 (2008)CrossRefGoogle Scholar
  10. 10.
    Rakotomamonjy, A., Guigue, V.: BCI Competition III: Dataset II – Ensemble of SVMs for BCI P300 Speller. IEEE Trans. Biomedical Engineering 55(3), 1147–1154 (2008)CrossRefGoogle Scholar
  11. 11.
    Schalk, G., McFarland, D.J., Hinterberger, T., Birbaumer, N., Wolpaw, J.R.: BCI2000: A general-purpose brain-computer interface (BCI) system. IEEE. Trans. Biomed. Eng. 2004 51, 1034–1043 (2004)CrossRefGoogle Scholar
  12. 12.
    Sellers, E.W., Donchin, E.: A P300-based brain-computer interface: Initial tests by ALS patients. Clin. Neurophysiol. 117, 538–548 (2006)CrossRefGoogle Scholar
  13. 13.
    Serby, H., Yom-Tov, E., Inbar, G.F.: An improved P300-based brain-computer interface. IEEE Trans. Neural Syst. Rehabil. Eng. 13, 89–98 (2005)CrossRefGoogle Scholar
  14. 14.
    Sharbrough, F., Chatrian, C.E., Lesser, R.P., Luders, H., Nuwer, M., Picton, T.W.: American Electroencephalographic Society guidelines for standard electrode position nomenclature. J. Clin. Neurophysiol. 8, 200–202 (1991)CrossRefGoogle Scholar
  15. 15.
    Vaughan, T.M., McFarland, D.J., Schalk, G., Sarnacki, W.A., Krusienski, D.J., Sellers, E.W., Wolpaw, J.R.: The Wadsworth BCI Research and Development Program: At Home with BCI. IEEE Transactions on Neural Systems and Rehabilitation Engineering 14(2) (2006)Google Scholar
  16. 16.
    Wolpaw, J.R., Birbaumer, N., McFarland, D.J., Pfurtscheller, G., Vaughan, T.: Brain-computer interfaces for communication and control. Clin. Neurophysiol. 113, 767–791 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Garett D. Johnson
    • 1
  • Dean J. Krusienski
    • 1
  1. 1.University of North FloridaJacksonvilleUSA

Personalised recommendations