Stream-Based Dynamic Compilation for Object-Oriented Languages

  • Michael Bebenita
  • Mason Chang
  • Andreas Gal
  • Michael Franz
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 33)


Traditional just-in-time compilers operate at the granularity of methods. Compiling a method in such a compiler is an atomic operation that can require substantial amounts of processing time, resulting in execution pauses in interactive computing environments. We describe a new software architecture for dynamic compilers in which the granularity of compilation steps is much finer, forming a “pipeline” with completely linear runtime behavior, and in which there are only two write barriers. This means that on future many-core platforms, the compiler itself can be parallelized, providing high-throughput dynamic compilation without execution pauses. As our prototype for Java demonstrates, stream-based compilation lends itself very naturally to an object-oriented implementation.


Java Virtual Machine Parallel Pipeline Escape Analysis Trace Tree Common Subexpression Elimination 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arnold, K., Gosling, J.: The Java Programming Language, 2nd edn. ACM Press/Addison-Wesley Publishing Co., New York (1998)zbMATHGoogle Scholar
  2. 2.
    Bala, V., Duesterwald, E., Banerjia, S.: Transparent Dynamic Optimization: The Design and Implementation of Dynamo. Hewlett Packard Laboratories Technical Report HPL-1999-78 (June 1999)Google Scholar
  3. 3.
    Ball, T., Larus, J.: Efficient Path Profiling. In: Proceedings of the 29th Annual International Symposium on Microarchitecture, pp. 46–57 (1996)Google Scholar
  4. 4.
    Berndl, M., Hendren, L.: Dynamic Profiling and Trace Cache Generation for a Java Virtual Machine. Technical Report, McGill University (2002)Google Scholar
  5. 5.
    Bradel, B.: The Use of Traces in Optimization. PhD Thesis, University of Toronto (2004)Google Scholar
  6. 6.
    Burger, R.: Efficient Compilation and Profile-Driven Recompilation in Scheme. PhD thesis, Department of Computer Science, Indiana University (1997)Google Scholar
  7. 7.
    Chambers, C., Ungar, D., Lee, E.: An Efficient Implementation of SELF, a Dynamically-Typed Object-Oriented Language Based on Prototypes. Higher-Order and Symbolic Computation 4(3), 243–281 (1991)Google Scholar
  8. 8.
    Chang, M., Smith, E., Reitmaier, R., Gal, A., Bebenita, M., Wimmer, C., Eich, B., Franz, M.: Tracing for Web 3.0: Trace Compilation for the Next Generation Web Applications. In: 5th International Conference on Virtual Execution Environments (VEE) (2009)Google Scholar
  9. 9.
    Chang, P., Mahlke, S., Chen, W., Warter, N., Hwu, W.: IMPACT: An Architectural Framework for Multiple-Instruction-Issue Processors. In: Proceedings of the 18th Annual International Symposium on Computer Architecture, pp. 266–275 (1991)Google Scholar
  10. 10.
    Fisher, J.: Trace Scheduling: A Technique for Global Microcode Compaction. IEEE Transactions on Computers 30(7), 478–490 (1981)CrossRefGoogle Scholar
  11. 11.
    Gal, A., Eich, B., Shaver, M., Anderson, D., Kaplan, B., Hoare, G., Mandelin, D., Zbarsky, B., Orendorff, J., Ruderman, J., Smith, E., Reitmaier, R., Haghighat, M.R., Bebenita, M., Chang, M., Franz, M.: Trace-based Just-in-Time Type Specialization for Dynamic Languages. In: ACM SIGPLAN 2009 Conference on Programming Language Design and Implementation (PLDI) (2009)Google Scholar
  12. 12.
    Gal, A., Probst, C., Franz, M.: HotpathVM: An Effective JIT Compiler for Resource-Constrained Devices. In: Proceedings of the 2nd International Conference on Virtual Execution Environments (VEE), pp. 144–153 (2006)Google Scholar
  13. 13.
    Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley Longman Publishing Co., Inc., Boston (1995)zbMATHGoogle Scholar
  14. 14.
    Goldberg, A., Robson, D.: Smalltalk-80: the Language and its Implementation. Addison-Wesley Longman Publishing Co., Inc., Boston (1983)zbMATHGoogle Scholar
  15. 15.
    Hank, R., Mahlke, S., Bringmann, R., Gyllenhaal, J., Hwu, W.: Superblock Formation Using Static Program Analysis. In: MICRO 26: Proceedings of the 26th Annual International Symposium on Microarchitecture, pp. 247–255. IEEE Computer Society Press, Los Alamitos (1993)CrossRefGoogle Scholar
  16. 16.
    Hansen, G.: Adaptive Systems for the Dynamic Run-Time Optimization of Programs. PhD Thesis, Department of Computer Science, Carnegie-Mellon University (March 1974)Google Scholar
  17. 17.
    Hölzle, U.: Adaptive Optimization for Self: Reconciling High Performance with Exploratory Programming. PhD Thesis, Stanford University, Department of Computer Science (1994)Google Scholar
  18. 18.
    IBM. WebSphere Everyplace Custom Environment J9 Virtual Machine (October 2006),
  19. 19.
    Kistler, T., Franz, M.: Continuous Program Optimization: Design and Evaluation. IEEE Transactions on Computers 50(6), 549–566 (2001)CrossRefGoogle Scholar
  20. 20.
    Kistler, T., Franz, M.: Continuous Program Optimization: A Case Study. ACM Transactions on Programming Languages and Systems (TOPLAS) 25(4), 500–548 (2003)CrossRefGoogle Scholar
  21. 21.
    Lindholm, T., Yellin, F.: The Java Virtual Machine Specification, 2nd edn. The Java Series. Addison Wesley Longman, Inc., Amsterdam (1999)Google Scholar
  22. 22.
    Palsberg, J., Jay, C.: The Essence of the Visitor Pattern. In: The Twenty-Second Annual International Computer Software and Applications Conference, COMPSAC 1998. Proceedings, pp. 9–15 (1998)Google Scholar
  23. 23.
    Rosen, B., Wegman, M., Zadeck, F.: Global Value Numbers and Redundant Computations. In: POPL 1988: Proceedings of the 15th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pp. 12–27. ACM Press, New York (1988)Google Scholar
  24. 24.
    Suganuma, T., Yasue, T., Nakatani, T.: A Region-Based Compilation Technique for Dynamic Compilers. ACM Transactions on Programming Languages and Systems (TOPLAS) 28(1), 134–174 (2006)CrossRefGoogle Scholar
  25. 25.
    Sun Microsystems. The Java Hotspot Virtual Machine v1.4.1 (September 2002)Google Scholar
  26. 26.
    Whaley, J.: Partial Method Compilation Using Dynamic Profile Information. In: ACM Conference on Object-Oriented Programming Systems, Languages and Applications, pp. 166–179. ACM Press, New York (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Michael Bebenita
    • 1
  • Mason Chang
    • 1
  • Andreas Gal
    • 1
  • Michael Franz
    • 1
  1. 1.University of CaliforniaIrvine

Personalised recommendations