A Virtual Human Agent Model with Behaviour Based on Feeling Exhaustion

  • Jan Treur
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5579)

Abstract

A computational agent model for monitoring and control of a virtual human agent’s resources and exhaustion is presented. It models a physically grounded intelligent decision making process within the agent model for physical effort to be spent. Simulation results are discussed, and a formal analysis is presented on conditions under which the agent model functions properly, for example, such that it can be used to avoid running out of resources. Finally, the model is related to a model for monitoring or simulating a person’s heart rate.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bosse, T., Both, F., van Lambalgen, R., Treur, J.: An Agent Model for a Human’s Functional State and Performance. In: Jain, L., Gini, M., Faltings, B.B., Terano, T., Zhang, C., Cercone, N., Cao, L. (eds.) Proc. of the 8th IEEE/WIC/ACM Intern.Conf. on Intelligent Agent Technology, IAT 2008, pp. 302–307. IEEE Computer Society Press, Los Alamitos (2008)CrossRefGoogle Scholar
  2. 2.
    Cannon, W.B.: The Wisdom of the Body. W.W. Norton and Co., New York (1932)Google Scholar
  3. 3.
    Clark, A.: Being There: Putting Brain Body and World Together Again. MIT Press, Cambridge (1997)Google Scholar
  4. 4.
    Coats, E.M., Rossiter, H.B., Day, J.R., Miura, A., Fukuba, Y., Whipp, B.J.: Intensity-dependent tolerance to exercise after attaining VO2 max in humans. J. of Applied Physiology 95, 483–490 (2003)CrossRefGoogle Scholar
  5. 5.
    Damasio, A.: The Feeling of What Happens: Body, Emotion and the Making of Consciousness. MIT Press, Cambridge (1999)Google Scholar
  6. 6.
    Fukuba, Y., Whipp, B.J.: A metabolic limit on the ability to make up for lost time in endurance events. J. of Applied Physiology 87, 853–861 (1999)Google Scholar
  7. 7.
    Fukuba, Y., Miura, A., Endo, M., Kan, A., Yanagawa, K., Whipp, B.J.: The Curvature Constant Parameter of the Power-Duration Curve for Varied-Power Exercise. Medicine and Science in Sports and Exercise 35, 1413–1418 (2003)CrossRefGoogle Scholar
  8. 8.
    Hill, A.V., Long, C.N.V., Lupton, H.: Muscular exercise, lactic acid, and the supply and utilisation of oxygen. Proc. Royal Soc. Bri. 97, Parts I-III, 438–475, Parts VII-VIII, 155–176 (1924)Google Scholar
  9. 9.
    Hill, D.W.: The critical power concept. Sports Medicine 16, 237–254 (1993)CrossRefGoogle Scholar
  10. 10.
    Jones, A.M., Wilkerson, D.P., DiMenna, F., Fulford, J., Poole, D.C.: Muscle metabolic responses to exercise above and below the ‘critical power’ assessed using 31P-MRS. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology 294, 585–593 (2008)Google Scholar
  11. 11.
    Lambert, E.V., St. Clair Gibson, A., Noakes, T.D.: Complex systems model of fatigue: integrative homoeostatic control of peripheral physiological systems during exercise in humans. British J. of Sports Medicine 39, 52–62 (2005)CrossRefGoogle Scholar
  12. 12.
    Noakes, T.D.: Physiological models to understand exercise fatigue and the adaptations that predict or enhance athletic performance. Scand. Journal of Medicine and Science in Sports 10, 123–145 (2000)CrossRefGoogle Scholar
  13. 13.
    Steels, L., Brooks, R.: The artificial life route to artificial intelligence: building embodied, situated agents. Lawrence Erlbaum, Mahwah (1995)Google Scholar
  14. 14.
    Wilmore, J.H., Costill, D.L.: Physiology of Sport and Exercise. Human Kinetics, Champaign (2004)Google Scholar
  15. 15.
    Widmaier, E.P., Raff, H., Strang, K.T.: Vander’s Human Physiology: the Mechanisms of Body Functioning. MacGraw Hill (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Jan Treur
    • 1
  1. 1.Department of Artificial IntelligenceVrije Universiteit AmsterdamAmsterdamThe Netherlands

Personalised recommendations