The Sequential Parameter Optimization Toolbox



The sequential parameter optimization toolbox (SPOT) is one possible implementation of the SPO framework introduced in Chap. 2. It has been successfully applied to numerous heuristics for practical and theoretical optimization problems. We describe the mechanics and interfaces employed by SPOT to enable users to plug in their own algorithms. Furthermore, two case studies are presented to demonstrate how SPOT can be applied in practice, followed by a discussion of alternative metamodels to be plugged into it.We conclude with some general guidelines.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Armitage P (1975) Sequential medical trials, 2nd edn. Blackwell, Oxford, U.K.Google Scholar
  2. Bartz-Beielstein T (2010a) Sequential parameter optimization. Tech. Rep. 04/2010, Institute of Computer Science, Faculty of Computer Science and Engineering Science, Cologne University of Applied Sciences, Germany, URL http: // lehrende/bartz_beielstein_thomas/spotannotatedbib.pdfGoogle Scholar
  3. Bartz-Beielstein T (2010b) SPOT: An R package for automatic and interactive tuning of optimization algorithms by sequential parameter optimization. Tech. Rep. CIOP TR 05-10, Cologne University of Applied Sciences, URL, related software can be downloaded from Google Scholar
  4. Bartz-Beielstein T, Lasarczyk C, Preuß M (2005) Sequential parameter optimization. In: McKay B, et al. (eds) Proceedings 2005 Congress on Evolutionary Computation (CEC’05), Edinburgh, Scotland, IEEE Press, Piscataway NJ, vol 1, pp 773–780CrossRefGoogle Scholar
  5. Beyer HG (2001) The Theory of Evolution Strategies. SpringerGoogle Scholar
  6. Beyer HG, Schwefel HP (2002) Evolution strategies—A comprehensive introduction.Natural Computing 1:3–52MATHCrossRefMathSciNetGoogle Scholar
  7. Breiman L, Friedman JH, Olshen RA, Stone CJ (1984) Classification and Regression Trees. Wadsworth, Monterey CAMATHGoogle Scholar
  8. Chen J, Chen C, Kelton D (2003) Optimal computing budget allocation of indifference-zone-selection procedures, working paper, taken from Cited 6 January 2005
  9. Draper NR, Smith H (1998) Applied Regression Analysis, 3rd edn. Wiley, New York NYGoogle Scholar
  10. Fober T, Mernberger M, Klebe G, Hüllermeier E (2009) Evolutionary construction of multiple graph alignments for the structural analysis of biomolecules. Bioinformatics 25(16):2110–2117CrossRefGoogle Scholar
  11. Fox J (2002) An R and S-Plus Companion to Applied Regression. SageGoogle Scholar
  12. Ihaka R, Gentleman R (1996) R: A language for data analysis and graphics. Journal of Computational and Graphical Statistics 5(3):299–314CrossRefGoogle Scholar
  13. Kleijnen JPC (1987) Statistical Tools for Simulation Practitioners. Marcel Dekker, New York NYMATHGoogle Scholar
  14. Konen W, Zimmer T, Bartz-Beielstein T (2009) Optimierte Modellierung von üllständen in Regenüberlaufbecken mittels CI-basierter Parameterselektion Optimized Modelling of Fill Levels in Stormwater Tanks Using CI-based Parameter Selection 57(3):155–166CrossRefGoogle Scholar
  15. Lasarczyk CWG (2007) Genetische Programmierung einer algorithmischen Chemie. PhD thesis, Technische Universität DortmundGoogle Scholar
  16. Lophaven S, Nielsen H, Søndergaard J (2002) DACE—A Matlab Kriging Toolbox. Tech. Rep. IMM-REP-2002-12, Informatics and Mathematical Modelling, Technical University of Denmark, Copenhagen, DenmarkGoogle Scholar
  17. Maindonald J, Braun J (2003) Data Analysis and Graphics using R—an Examplebased Approach. Cambridge University Press, Cambridge UKGoogle Scholar
  18. Mehnen J, Michelitsch T, Bartz-Beielstein T, Henkenjohann N (2004) Systematic analyses of multi-objective evolutionary algorithms applied to real-world problems using statistical design of experiments. In: Teti R (ed) Proceedings Fourth International Seminar Intelligent Computation in Manufacturing Engineering, CIRP ICME’04, Naples, Italy, vol 4, pp 171–178Google Scholar
  19. Mehnen J, Michelitsch T, Lasarczyk C, Bartz-Beielstein T (2007) Multi-objective evolutionary design of mold temperature control using DACE for parameter optimization. International Journal of Applied Electromagnetics and Mechanics 25(1–4):661–667Google Scholar
  20. Montgomery DC (2001) Design and Analysis of Experiments, 5th edn. Wiley, New York NYGoogle Scholar
  21. Pukelsheim F (1993) Optimal Design of Experiments. Wiley, New York NYMATHGoogle Scholar
  22. Rudolph G, Preuss M, Quadflieg J (2009) Two-layered surrogate modeling for tuning optimization metaheuristics. Algorithm Engineering Report TR09-2-005, Faculty of Computer Science, Algorithm Engineering (Ls11), Technische Universität Dortmund, GermanyGoogle Scholar
  23. Santner TJ, Williams BJ, Notz WI (2003) The Design and Analysis of Computer Experiments. SpringerMATHGoogle Scholar
  24. Tukey J (1991) The philosophy of multiple comparisons. Statistical Science 6:100– 116CrossRefGoogle Scholar
  25. Volkert L (2006) Investigating ea based training of hmm using a sequential parameter optimization approach. In: Yen GG, Lucas SM, Fogel G, KendallG, Salomon R, Zhang BT, Coello CAC, Runarsson TP (eds) Proceedings of the 2006 IEEE Congress on Evolutionary Computation, IEEE Press, Vancouver, BC, Canada, pp 2742–2749, URL servlet/opac?punumber=11108CrossRefGoogle Scholar
  26. Y (2008) Fuzzy operator trees for modeling utility functions. PhD thesis, Philipps-Universität MarburgGoogle Scholar
  27. Ziegenhirt J, Bartz-Beielstein T, Flasch O, KonenW, Zaefferer M (2010) Optimization of biogas production with computational intelligence—a comparative study. Tech. Rep. 03/2010, Institute of Computer Science, Faculty of Computer Science and Engineering Science, Cologne University of Applied Sciences, GermanyGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Institute of Computer Science, Cologne University of Applied SciencesGummersbachGermany
  2. 2.Algorithm EngineeringTU DortmundGermany

Personalised recommendations