Nanoimprint Lithography – Patterning of Resists Using Molding

Abstract

Nanoimprint lithography (NIL) is an emerging high-resolution parallel patterning method, mainly aimed towards fields in which electron-beam and high-end photolithography are costly and do not provide sufficient resolution at reasonable throughput. In a top-down approach, a surface pattern of a stamp is replicated into a material by mechanical contact and three-dimensional material displacement. This can be done by shaping a liquid followed by a curing process for hardening, by variation of the thermomechanical properties of a film by heating and cooling, or by any other kind of shaping process using the difference in hardness of a mold and a moldable material. The local thickness contrast of the resulting thin molded film can be used as a means to pattern an underlying substrate at the wafer level by standard pattern transfer methods, but also directly in applications where a bulk modified functional layer is needed. This makes NIL a promising technique for volume manufacture of nanostructured components. At present, structures with feature sizes down to 5 nm have been realized, and the resolution is limited by the ability to manufacture the stamp relief. For historical reasons, the term nanoimprint lithography refers to a hot embossing process (thermal NIL). In ultraviolet (UV)-NIL, a photopolymerizable resin is used together with a UV-transparent stamp. In both processes thin-film squeeze flow and capillary action play a central role in understanding the NIL process. In this chapter we will give an overview of NIL, with emphasis on general principles and concepts rather than specific process issues and state-of-the-art tools and processes. Material aspects of stamps and resists are discussed. We discuss specific applications where imprint methods have significant advantages over other structuring methods. We conclude by discussing areas where further development in this field is required.

Abbreviations

µCP

microcontact printing

2-D

two-dimensional

3-D

three-dimensional

AFM

atomic force microscope

AFM

atomic force microscopy

BD

blu-ray disc

CD

compact disc

CD

critical dimension

CMOS

complementary metal–oxide–semiconductor

CVD

chemical vapor deposition

CoO

cost of ownership

DTR

discrete track recording

DUV

deep-ultraviolet

DVD

digital versatile disc

EBL

electron-beam lithography

EUV

extreme ultraviolet

FDA

Food and Drug Administration

HDD

hard-disk drive

HDTV

high-definition television

HEL

hot embossing lithography

HF

hydrofluoric

ITRS

International Technology Roadmap for Semiconductors

JFIL

jet-and-flash imprint lithography

LCoS

liquid crystal on silicon

LED

light-emitting diode

LFM

lateral force microscope

LFM

lateral force microscopy

LOR

lift-off resist

MAPL

molecular assembly patterning by lift-off

MEMS

microelectromechanical system

MFM

magnetic field microscopy

MFM

magnetic force microscope

MFM

magnetic force microscopy

MVD

molecular vapor deposition

NGL

next-generation lithography

OLED

organic light-emitting device

PC

polycarbonate

PCB

printed circuit board

PCL

polycaprolactone

PDMS

polydimethylsiloxane

PL

photolithography

PMMA

poly(methyl methacrylate)

PS

polystyrene

PTFE

polytetrafluoroethylene

PhC

photonic crystal

RIE

reactive-ion etching

SAW

surface acoustic wave

SFIL

step and flash imprint lithography

SL

soft lithography

SSIL

step-and-stamp imprint lithography

UV

ultraviolet

References

  1. 9.1.
    E. Berliner: Gramophone, US Patent 372786 (1887), http://www.audioannals.com/berlinere.htm
  2. 9.2.
    E. Berliner: Process for producing records of sound, US Patent 382790 (1888), http://www.audioannals.com/berlinere.htm
  3. 9.3.
    J.C. Ruda: Record manufacturing: making sound for everyone, J. Audio Eng. Soc. 25(10/11), 702–711 (1977)Google Scholar
  4. 9.4.
    K.C. Pohlmann: The Compact Disc Handbook, Comput. Music Dig. Audio Ser., Vol. 5, 2nd edn. (A-R Editions, Madison 1992)Google Scholar
  5. 9.5.
    H. Schift, C. David, M. Gabriel, J. Gobrecht, L.J. Heyderman, W. Kaiser, S. Köppel, L. Scandella: Nanoreplication in polymers using hot embossing and injection molding, Microelectron. Eng. 53, 171–174 (2000)CrossRefGoogle Scholar
  6. 9.6.
    S.Y. Chou, P.R. Krauss: Imprint lithography with sub-10 nm feature size and high throughput, Microelectron. Eng. 35, 237–240 (1997)CrossRefGoogle Scholar
  7. 9.7.
    R.W. Jaszewski, H. Schift, J. Gobrecht, P. Smith: Hot embossing in polymers as a direct way to pattern resist, Microelectron. Eng. 41/42, 575–578 (1998)CrossRefGoogle Scholar
  8. 9.8.
    Y. Xia, G.M. Whitesides: Soft lithography, Angew. Chem. Int. Ed. 37, 550–575 (1998)CrossRefGoogle Scholar
  9. 9.9.
    B. Michel, A. Bernard, A. Bietsch, E. Delamarche, M. Geissler, D. Juncker, H. Kind, J.-P. Renault, H. Rothuizen, H. Schmid, P. Schmidt-Winkel, R. Stutz, H. Wolf: Printing meets lithography: Soft approaches to high-resolution, IBM J. Res. Dev. 45(5), 697–719 (2001)CrossRefGoogle Scholar
  10. 9.10.
    W. Menz, J. Mohr, O. Paul: Microsystem Technology (Wiley-VCH, Weinheim 2001)Google Scholar
  11. 9.11.
    H. Schift: Nanoimprint lithography: An old story in modern times? A review, J. Vac. Sci. Technol. B 26(2), 458–480 (2008)CrossRefGoogle Scholar
  12. 9.12.
    H. Schift (Ed.): NaPa Library of Processes (NaPa-consortium, 2008), http://www.napanil.org (last access December 2009)
  13. 9.13.
    C. Sotomayor Torres: Alternative lithography – Unleashing the potential of nanotechnology. In: Nanostructure Science and Technology, ed. by D.J. Lockwood (Kluwer, New York 2003)Google Scholar
  14. 9.14.
    International Technology Roadmap for Semiconductors, http://public.itrs.net/ (last accessed May 8, 2008)
  15. 9.15.
    R. Compaño (Ed.): Technology Roadmap for Nanoelectronics, European Commission IST Programme, Future and Emerging Technologies, 2nd edn. (European Commission, Brussels 2000)Google Scholar
  16. 9.16.
    H. Moore: Cramming more components onto integrated circuits, Electronics 38(8), 114–117 (1965)Google Scholar
  17. 9.17.
    S. Okazaki: Resolution limits of optical lithography, J. Vac. Sci. Technol. B 9(6), 2829–2833 (1991)CrossRefGoogle Scholar
  18. 9.18.
    L.J. Heyderman, H. Schift, C. David, J. Gobrecht, T. Schweizer: Flow behaviour of thin polymer films used for hot embossing lithography, Microelectron. Eng. 54, 229–245 (2000)CrossRefGoogle Scholar
  19. 9.19.
    H. Schulz, M. Wissen, N. Bogdanski, H.-C. Scheer, K. Mattes, C. Friedrich: Impact of molecular weight of polymers and shear rate effects for nanoimprint lithography, Microelectron. Eng. 83, 259–280 (2006)CrossRefGoogle Scholar
  20. 9.20.
    S.Y. Chou, P.R. Krauss, P.J. Renstrom: Imprint of sub-25 nm vias and trenches in polymers, Appl. Phys. Lett. 67(21), 3114–3116 (1995)CrossRefGoogle Scholar
  21. 9.21.
    S.Y. Chou, P.R. Krauss, P.J. Renstrom: Nanoimprint lithography, J. Vac. Sci. Technol. B 14(6), 4129–4133 (1996)CrossRefGoogle Scholar
  22. 9.22.
    S.Y. Chou: Nanoimprint lithography, US Patent 5772905 (1995)Google Scholar
  23. 9.23.
    L. Baraldi, R. Kunz, J. Meissner: High-precision molding of integrated optical structures, Proc. SPIE 1992, 21–29 (1993)CrossRefGoogle Scholar
  24. 9.24.
    J. Haisma, M. Verheijen, K. van den Heuvel, J. van den Berg: Mold-assisted lithography: A process for reliable pattern replication, J. Vac. Sci. Technol. B 14, 4124–4128 (1996)CrossRefGoogle Scholar
  25. 9.25.
    M. Colburn, S. Johnson, M. Stewart, S. Damle, T. Bailey, B. Choi, M. Wedlake, T. Michealson, S.V. Sreenivasan, J. Ekerdt, C.G. Willson: Step and flash imprint lithography: A new approach to high-resolution patterning, Proc. SPIE 3676, 379–389 (1999)CrossRefGoogle Scholar
  26. 9.26.
    D.J. Resnick, W.J. Dauksher, D. Mancini, K.J. Nordquist, T.C. Bailey, S. Johnson, N. Stacey, J.G. Ekerdt, C.G. Willson, S.V. Sreenivasan, N. Schumaker: Imprint lithography: Lab curiosity or the real NGL?, Proc. SPIE 5037, 12–23 (2003)CrossRefGoogle Scholar
  27. 9.27.
    D.J. Resnick, S.V. Sreenivasan, C.G. Willson: Step and flash imprint lithography, Mater. Today 8, 34–42 (2005)CrossRefGoogle Scholar
  28. 9.28.
    M. Doi: Introduction to Polymer Physics (Clarendon, Oxford 1996)Google Scholar
  29. 9.29.
    D.W. van Krevelen: Properties of Polymers (Elsevier, Amsterdam 1990)Google Scholar
  30. 9.30.
    H. Schift, L.J. Heyderman: Nanorheology – squeezed flow in hot embossing of thin films. In: Alternative Lithography, Nanostruct. Sci. Technol., ed. by C. Sotomayor Torres (Kluwer, New York 2003) pp. 46–76Google Scholar
  31. 9.31.
    H.-C. Scheer, H. Schulz, T. Hoffmann, C.M. Sotomayor Torres: Nanoimprint techniques. In: Handbook of Thin Film Materials, Vol. 5, ed. by H.S. Nalva (Academic, New York 2002) pp. 1–60, Chap. 1Google Scholar
  32. 9.32.
    M.D. Austin, H. Ge, W. Wu, M. Li, Z. Yu, D. Wasserman, S.A. Lyon, S.Y. Chou: Fabrication of 5 nm linewidth and 14 nm pitch features by nanoimprint lithography, Appl. Phys. Lett. 84(26), 5299–5301 (2004)CrossRefGoogle Scholar
  33. 9.33.
    E.A. Dobisz, S.L. Brandow, R. Bass, J. Mitterender: Effects of molecular properties on nanolithography in polymethyl methacrylate, J. Vac. Sci. Technol. B 18, 107–111 (2000)CrossRefGoogle Scholar
  34. 9.34.
    A. Olzierski, I. Raptis: Development and molecular-weight issues on the lithographic performance of poly (methyl methacrylate), Microelectron. Eng. 73/74, 244–251 (2004)CrossRefGoogle Scholar
  35. 9.35.
    M. Khoury, D.K. Ferry: Effect of molecular weight on poly(methyl methacrylate) resolution, J. Vac. Sci. Technol. B 14, 75–79 (1996)CrossRefGoogle Scholar
  36. 9.36.
    L.J. Fetters, D.J. Lohse, D. Richter, T.A. Witten, A. Zirkel: Connection between polymer molecular weight, density, chain dimensions, and melt viscoelastic properties, Macromolecules 27, 4639–4647 (1994)CrossRefGoogle Scholar
  37. 9.37.
    A. Franck: Kunststoff-Kompendium, 4th edn. (Vogel, Würzburg 1996) p. 255, in GermanGoogle Scholar
  38. 9.38.
    C.B. Roth, J.R. Dutcher: Mobility on different length scales in thin polymer films. In: Soft Materials: Structure and Dynamics, ed. by J.R. Dutcher, A.G. Marangoni (Dekker, New York 2004)Google Scholar
  39. 9.39.
    J.N. DʼAmour, U. Okoroanyanwu, C.W. Frank: Influence of substrate chemistry on the properties of ultrathin polymer films, Microelectron. Eng. 73/74, 209–217 (2004)CrossRefGoogle Scholar
  40. 9.40.
    R.B. Bird, C.F. Curtis, R.C. Armstrong, O. Hassager: Dynamics of Polymeric Liquids (Wiley, New York 1987)Google Scholar
  41. 9.41.
    L.G. Baraldi: Heißprägen in Polymeren für die Herstellung integriert-optischer Systemkomponenten. Ph.D. Thesis (ETH Zurich, Zurich 1994), Vol. 10762, in GermanGoogle Scholar
  42. 9.42.
    M.J. Stefan: Parallel Platten Rheometer, Akad. Wiss. Math.-Naturwiss. Vienna 2(69), 713–735 (1874), in GermanGoogle Scholar
  43. 9.43.
    J.-H. Jeong, Y.-S. Choi, Y.-J. Shin, J.-J. Lee, K.-T. Park, E.-S. Lee, S.-R. Lee: Flow behavior at the embossing stage of nanoimprint lithography, Fibers Polym. 3(3), 113–119 (2002)CrossRefGoogle Scholar
  44. 9.44.
    H. Schift, S. Park, J. Gobrecht: Nano-imprint – Molding resists for lithography, J. Photopolym. Sci. Technol. 16(3), 435–438 (2003)CrossRefGoogle Scholar
  45. 9.45.
    H.-C. Scheer, H. Schulz, T. Hoffmann, C.M. Sotomayor Torres: Problems of the nanoimprinting technique for nanometer scale pattern definition, J. Vac. Sci. Technol. B 16, 3917–3921 (1998)CrossRefGoogle Scholar
  46. 9.46.
    H.-C. Scheer, H. Schulz: A contribution to the flow behaviour of thin polymer films during hot embossing lithography, Microelectron. Eng. 56, 311–332 (2001)CrossRefGoogle Scholar
  47. 9.47.
    L.J. Guo: Recent progress in nanoimprint technology and its applications, J. Phys. D 37, R123–R141 (2004)CrossRefGoogle Scholar
  48. 9.48.
    L.J. Guo: Nanoimprint lithography: Methods and material requirements, Adv. Mater. 19, 495–513 (2007)CrossRefGoogle Scholar
  49. 9.49.
    C. Gourgon, C. Perret, G. Micouin, F. Lazzarino, J.H. Tortai, O. Joubert, J.-P.E. Grolier: Influence of pattern density in nanoimprint lithography, J. Vac. Sci. Technol. B 21(1), 98–105 (2003)CrossRefGoogle Scholar
  50. 9.50.
    A. Lebib, Y. Chen, J. Bourneix, F. Carcenac, E. Cambril, L. Couraud, H. Launois: Nanoimprint lithography for a large area pattern replication, Microelectron. Eng. 46, 319–322 (1999)CrossRefGoogle Scholar
  51. 9.51.
    C. Gourgon, J.H. Tortai, F. Lazzarino, C. Perret, G. Micouin, O. Joubert, S. Landis: Influence of residual solvent in polymers patterned by nanoimprint lithography, J. Vac. Sci. Technol. B 22(6), 602–606 (2004)CrossRefGoogle Scholar
  52. 9.52.
    Y. Hirai, M. Fujiwara, T. Okuno, Y. Tanaka, M. Endo, S. Irie, K. Nakagawa, M. Sasago: Study of the resist deformation in nanoimprint lithography, J. Vac. Sci. Technol. B 19(6), 2811–2815 (2001)CrossRefGoogle Scholar
  53. 9.53.
    Y. Hirai, T. Konishi, T. Yoshikawa, S. Yoshida: Simulation and experimental study of polymer deformation in nanoimprint lithography, J. Vac. Sci. Technol. B 22(6), 3288–3293 (2002)CrossRefGoogle Scholar
  54. 9.54.
    H.D. Rowland, W.P. King: Polymer deformation and filling modes during microembossing, J. Micromech. Microeng. 14, 1625–1632 (2004)CrossRefGoogle Scholar
  55. 9.55.
    S. Zankovych, T. Hoffmann, J. Seekamp, J.-U. Bruch, C.M. Sotomayor Torres: Nanoimprint lithography: challenges and prospects, Nanotechnology 12(2), 91–95 (2001)CrossRefGoogle Scholar
  56. 9.56.
    M. Beck, M. Graczyk, I. Maximov, E.-L. Sarwe, T.G.I. Ling, M. Keil, L. Montelius: Improving stamps for 10 nm level wafer scale nanoimprint, lithography, Microelectron. Eng. 61/62, 441–448 (2002)CrossRefGoogle Scholar
  57. 9.57.
    D.-Y. Khang, H.H. Lee: Room-temperature imprint lithography by solvent vapor treatment, Appl. Phys. Lett. 76(7), 870–872 (2000)CrossRefGoogle Scholar
  58. 9.58.
    D.-Y. Khang, H. Yoon, H.H. Lee: Room-temperature imprint lithography, Adv. Mater. 13(10), 749–751 (2001)CrossRefGoogle Scholar
  59. 9.59.
    D.-Y. Khang, H. Kang, T.-I. Kim, H.H. Lee: Low-pressure nanoimprint lithography, Nano Lett. 4(4), 633–637 (2004)CrossRefGoogle Scholar
  60. 9.60.
    H. Lee, G.Y. Jung: Full wafer scale near zero residual nano-imprinting lithography using UV curable monomer solution, Microelectron. Eng. 77(1), 42–47 (2005)MathSciNetCrossRefGoogle Scholar
  61. 9.61.
    L. Tan, Y.P. Kong, S.W. Pang, A.F. Yee: Imprinting of polymer at low temperature and pressure, J. Vac. Sci. Technol. B 22(5), 2486–2492 (2004)CrossRefGoogle Scholar
  62. 9.62.
    C. Finder, C. Mayer, H. Schulz, H.-C. Scheer, M. Fink, K. Pfeiffer: Non-contact fluorescence measurements for inspection and imprint depth control in nanoimprint lithography, Proc. SPIE 4764, 218–223 (2002)CrossRefGoogle Scholar
  63. 9.63.
    D. Jucius, V. Grigaliunas, A. Guobiene: Rapid evaluation of imprint quality using optical scatterometry, Microelectron. Eng. 71, 190–196 (2004)CrossRefGoogle Scholar
  64. 9.64.
    A. Fuchs, B. Vratzov, T. Wahlbrink, Y. Georgiev, H. Kurz: Interferometric in situ alignment for UV-based nanoimprint, J. Vac. Sci. Technol. B 22(6), 3242–3245 (2002)CrossRefGoogle Scholar
  65. 9.65.
    Z. Yu, H. Gao, S.Y. Chou: In situ real time process characterisation in nanoimprint lithography using time-resolved diffractive scatterometry, Appl. Phys. Lett. 85(18), 4166–4168 (2004)CrossRefGoogle Scholar
  66. 9.66.
    F. Lazzarino, C. Gourgon, P. Schiavone, C. Perret: Mold deformation in nanoimprint lithography, J. Vac. Sci. Technol. B 22(6), 3318–3322 (2002)CrossRefGoogle Scholar
  67. 9.67.
    C. Perret, C. Gourgon, F. Lazzarino, J. Tallal, S. Landis, R. Pelzer: Characterization of 8 in wafers printed by nanoimprint lithography, Microelectron. Eng. 73/74, 172–177 (2004)CrossRefGoogle Scholar
  68. 9.68.
    C. Gourgon, C. Perret, J. Tallal, F. Lazzarino, S. Landis, O. Joubert, R. Pelzer: Uniformity across 200 mm silicon wafers printed by nanoimprint lithography, J. Phys. D 38, 70–73 (2005)CrossRefGoogle Scholar
  69. 9.69.
    U. Plachetka, M. Bender, A. Fuchs, B. Vratzov, T. Glinsner, F. Lindner, H. Kurz: Wafer scale patterning by soft UV-nanoimprint lithography, Microelectron. Eng. 73/74, 167–171 (2004)CrossRefGoogle Scholar
  70. 9.70.
    N. Roos, M. Wissen, T. Glinsner, H.-C. Scheer: Impact of vacuum environment on the hot embossing process, Proc. SPIE 5037, 211–218 (2003)CrossRefGoogle Scholar
  71. 9.71.
    D. Pisignano, A. Melcarne, D. Mangiullo, R. Cingolani, G. Gigli: Nanoimprint lithography of chromophore molecules under high-vacuum conditions, J. Vac. Sci. Technol. B 22(1), 185–188 (2004)CrossRefGoogle Scholar
  72. 9.72.
    H. Schift, L.J. Heyderman, M. Auf der Maur, J. Gobrecht: Pattern formation in hot embossing of thin polymer films, Nanotechnology 12, 173–177 (2001)CrossRefGoogle Scholar
  73. 9.73.
    S.Y. Chou, L. Zhuang: Lithographically induced self-assembly of periodic polymer micropillar arrays, J. Vac. Sci. Technol. B 17, 3197–3202 (1999)CrossRefGoogle Scholar
  74. 9.74.
    S.Y. Chou, L. Zhuang, L.J. Guo: Lithographically induced self-construction of polymer microstructures for resistless patterning, Appl. Phys. Lett. 75, 1004–1006 (1999)CrossRefGoogle Scholar
  75. 9.75.
    L. Wu, S.Y. Chou: Electrohydrodynamic instability of a thin film of viscoelastic polymer underneath a lithographically manufactured mask, J. Non-Newton. Fluid Mech. 125, 91–99 (2005)MATHCrossRefGoogle Scholar
  76. 9.76.
    E. Schäffer, T. Thurn-Albrecht, T.P. Russell, U. Steiner: Electrically induced structure formation and pattern transfer, Nature 403, 874–877 (2000)CrossRefGoogle Scholar
  77. 9.77.
    E. Schäffer, T. Thurn-Albrecht, T.P. Russell, U. Steiner: Method and apparatus for forming submicron patterns on films, US Patent 07880075001 (1999)Google Scholar
  78. 9.78.
    E. Schäffer, U. Steiner: Methods and apparatus for the formation of patterns in films using temperature gradients, European Patent PCT 124205.6 (2000)Google Scholar
  79. 9.79.
    K.Y. Suh, H.H. Lee: Capillary force lithography: large-area patterning, self-organization, and anisotropic dewetting, Adv. Funct. Mater. 6/7, 405–413 (2002)CrossRefGoogle Scholar
  80. 9.80.
    Y. Hirai, S. Yoshida, N. Takagi: Defect analysis in thermal nanoimprint lithography, J. Vac. Sci. Technol. B 21(6), 2765–2770 (2003)CrossRefGoogle Scholar
  81. 9.81.
    Y. Hirai, T. Yoshikawa, N. Takagi, S. Yoshida: Mechanical properties of poly-methyl methacrylate (PMMA) for nanoimprint lithography, J. Photopolym. Sci. Technol. 16(4), 615–620 (2003)CrossRefGoogle Scholar
  82. 9.82.
    M. Colburn, B.J. Choi, S.V. Sreenivasan, R.T. Bonnecaze, C.G. Willson: Ramifications of lubrication theory on imprint lithography, Microelectron. Eng. 75, 321–329 (2004)CrossRefGoogle Scholar
  83. 9.83.
    A. Fuchs, M. Bender, U. Plachetka, U. Hermanns, H. Kurz: Ultraviolet-based nanoimprint at reduced environmental pressure, J. Vac. Sci. Technol. B 23(6), 2925–2928 (2005)CrossRefGoogle Scholar
  84. 9.84.
    M. Colburn, I. Suez, B.J. Choi, M. Meissl, T. Bailey, S.V. Sreenivasan, J.G. Ekerdt, C.G. Willson: Characterization and modelling of volumetric and mechanical properties for step and flash imprint lithography photopolymers, J. Vac. Sci. Technol. B 19(6), 2685–2689 (2001)CrossRefGoogle Scholar
  85. 9.85.
    D.J. Resnick, W.J. Dauksher, D. Mancini, K.J. Nordquist, T.C. Bailey, S. Johnson, N. Stacey, J.G. Ekerdt, C.G. Willson, S.V. Sreenivasan, N. Schumaker: Imprint lithography for integrated circuit fabrication, J. Vac. Sci. Technol. B 21(6), 2624–2631 (2003)CrossRefGoogle Scholar
  86. 9.86.
    M. Otto, M. Bender, B. Hadam, B. Spangenberg, H. Kurz: Characterization and application of a UV-based imprint technique, Microelectron. Eng. 57/58, 361–366 (2001)CrossRefGoogle Scholar
  87. 9.87.
    B. Vratzov, A. Fuchs, M. Lemme, W. Henschel, H. Kurz: Large scale ultraviolet-based nanoimprint lithography, J. Vac. Sci. Technol. B 21(6), 2760–2764 (2003)CrossRefGoogle Scholar
  88. 9.88.
    M. Komuro, J. Taniguchi, S. Inoue, N. Kimura, Y. Tokano, H. Hiroshima, S. Matsui: Imprint characteristics by photo-induced solidification of liquid polymer, Jpn. J. Appl. Phys. 39, 7075–7079 (2000)CrossRefGoogle Scholar
  89. 9.89.
    H. Schulz, H.-C. Scheer, T. Hoffmann, C.M. Sotomayor Torres, K. Pfeiffer, G. Bleidießel, G. Grützner, C. Cardinaud, F. Gaboriau, M.-C. Peignon, J. Ahopelto, B. Heidari: New polymer materials for nanoimprinting, J. Vac. Sci. Technol. B 18(4), 1861–1865 (2000)CrossRefGoogle Scholar
  90. 9.90.
    H. Schulz, D. Lyebyedyev, H.-C. Scheer, K. Pfeiffer, G. Bleidießel, G. Grützner, J. Ahopelto: Master replication into thermosetting polymers for nanoimprinting, J. Vac. Sci. Technol. B 18(6), 3582–3585 (2000)CrossRefGoogle Scholar
  91. 9.91.
    K. Pfeiffer, M. Fink, G. Bleidießel, G. Grützner, H. Schulz, H.-C. Scheer, T. Hoffmann, C.M. Sotomayor Torres, F. Gaboriau, C. Cardinaud: Novel linear and crosslinking polymers for nanoimprinting with high etch resistance, Microelectron. Eng. 53, 411–414 (2000)CrossRefGoogle Scholar
  92. 9.92.
    S. Rudschuck, D. Hirsch, K. Zimmer, K. Otte, A. Braun, R. Mehnert, F. Bigl: Replication of 3-D-micro- and nanostrucutures using different UV-curable polymers, Microelectron. Eng. 53, 557–560 (2000)CrossRefGoogle Scholar
  93. 9.93.
    M. Sagnes, L. Malaquin, F. Carcenac, C. Vieu, C. Fournier: Imprint lithography using thermo-polymerisation of MMA, Microelectron. Eng. 61/62, 429–433 (2002)CrossRefGoogle Scholar
  94. 9.94.
    A. Abdo, S. Schuetter, G. Nellis, A. Wei, R. Engelstad, V. Truskett: Predicting the fluid behavior during the dispensing process for step-and-flash imprint lithography, J. Vac. Sci. Technol. B 22(6), 3279–3282 (2002)CrossRefGoogle Scholar
  95. 9.95.
    Y. Hirai, H. Kikuta, T. Sanou: Study on optical intensity distribution in photocuring nanoimprint lithography, J. Vac. Sci. Technol. B 21(6), 2777–2782 (2003)CrossRefGoogle Scholar
  96. 9.96.
    C.-H. Chang, R.K. Heilmann, R.C. Fleming, J. Carter, E. Murphy, M.L. Schattenburg, T.C. Bailey, J.G. Ekerdt, R.D. Frankel, R. Voisin: Fabrication of sawtooth diffraction gratings using nanoimprint lithography, J. Vac. Sci. Technol. B 21(6), 2755–2759 (2003)CrossRefGoogle Scholar
  97. 9.97.
    L.J. Heyderman, H. Schift, C. David, B. Ketterer, M. Auf der Maur, J. Gobrecht: Nanofabrication using hot embossing lithography and electroforming, Microelectron. Eng. 57/58, 375–380 (2001)CrossRefGoogle Scholar
  98. 9.98.
    P.R. Krauss, S.Y. Chou: Nano-compact disks with 400 Gbit/in2 storage density fabricated using nanoimprint lithography and read with proximal probe, Appl. Phys. Lett. 71(21), 3174–3176 (1997)CrossRefGoogle Scholar
  99. 9.99.
    W. Wu, B. Cui, X. Sun, W. Zhang, L. Zhuang, L. Kong, S.Y. Chou: Large area high density quantized magnetic disks fabricated using nanoimprint lithography, J. Vac. Sci. Technol. B 16(6), 3825–3829 (1998)CrossRefGoogle Scholar
  100. 9.100.
    H. Schift, S. Park, C.-G. Choi, C.-S. Kee, S.-P. Han, K.-B. Yoon, J. Gobrecht: Fabrication process for polymer photonic crystals using nanoimprint lithography, Nanotechnology 16, S261–S265 (2005)CrossRefGoogle Scholar
  101. 9.101.
    M. Hartney, D. Hess, D. Soane: Oxygen plasma etching for resist stripping and multilayer lithography, J. Vac. Sci. Technol. B 7, 1–13 (1989)CrossRefGoogle Scholar
  102. 9.102.
    W. Pilz, J. Janes, K.P.M. Müller, J. Pelka: Oxygen reactive ion etching of polymers – Profile evolution and process mechanisms, Proc. SPIE 1392, 84–94 (1990)CrossRefGoogle Scholar
  103. 9.103.
    B. Heidari, I. Maximov, E.-L. Sarwe, L. Montelius: Large scale nanolithography using imprint lithography, J. Vac. Sci. Technol. B 17, 2961–2964 (1999)CrossRefGoogle Scholar
  104. 9.104.
    D. Lyebyedyev, H.-C. Scheer: Mask definition by nanoimprint lithography, Proc. SPIE 4349, 82–85 (2001)CrossRefGoogle Scholar
  105. 9.105.
    X.-M. Yan, S. Kwon, A.M. Contreras, J. Bokor, G.A. Somorjai: Fabrication of large number density platinum nanowire arrays by size reduction lithography and nanoimprint lithography, Nano Lett. 5(4), 745–748 (2005)CrossRefGoogle Scholar
  106. 9.106.
    L.J. Heyderman, B. Ketterer, D. Bächle, F. Glaus, B. Haas, H. Schift, K. Vogelsang, J. Gobrecht, L. Tiefenauer, O. Dubochet, P. Surbled, T. Hessler: High volume fabrication of customised nanopore membrane chips, Microelectron. Eng. 67/68, 208–213 (2003)CrossRefGoogle Scholar
  107. 9.107.
    H. Schift, R.W. Jaszewski, C. David, J. Gobrecht: Nanostructuring of polymers and fabrication of interdigitated electrodes by hot embossing lithography, Microelectron. Eng. 46, 121–124 (1999)CrossRefGoogle Scholar
  108. 9.108.
    L. Montelius, B. Heidari, M. Graczyk, E.-L. Sarwe, T.G.I. Ling: Nanoimprint- and UV-lithography: mix&match process for fabrication of interdigitated nanobiosensors, Microelectron. Eng. 53, 521–524 (2000)CrossRefGoogle Scholar
  109. 9.109.
    M. Beck, F. Persson, P. Carlberg, M. Graczyk, I. Maximov, T.G.I. Ling, L. Montelius: Nanoelectrochemical transducers for (bio-) chemical sensor applications fabricated by nanoimprint lithography, Microelectron. Eng. 73/74, 837–842 (2004)CrossRefGoogle Scholar
  110. 9.110.
    H. Schift, L.J. Heyderman, C. Padeste, J. Gobrecht: Chemical nano-patterning using hot embossing lithography, Microelectron. Eng. 61/62, 423–428 (2002)CrossRefGoogle Scholar
  111. 9.111.
    S. Park, H. Schift, C. Padeste, J. Gobrecht: Nanostructuring of anti-adhesive layer by hot embossing lithography, Microelectron. Eng. 67/68, 252–258 (2003)CrossRefGoogle Scholar
  112. 9.112.
    S. Park, S. Saxer, C. Padeste, H.H. Solak, J. Gobrecht, H. Schift: Chemical patterning of sub 50 nm half pitches via nanoimprint lithography, Microelectron. Eng. 78/79, 682–688 (2005)CrossRefGoogle Scholar
  113. 9.113.
    D. Falconnet, D. Pasqui, S. Park, R. Eckert, H. Schift, J. Gobrecht, R. Barbucci, M. Textor: A novel approach to produce protein nanopatterns by combining nanoimprint, lithography and molecular self-assembly, Nano Lett. 4(10), 1909–1914 (2004)CrossRefGoogle Scholar
  114. 9.114.
    J.D. Hoff, L.-J. Cheng, E. Meyhofer, L.J. Guo, A.J. Hunt: Nanoscale protein patterning by imprint lithography, Nano Lett. 4(5), 853–857 (2004)CrossRefGoogle Scholar
  115. 9.115.
    T. Schliebe, G. Schneider, H. Aschoff: Nanostructuring high resolution phase zone plates in nickel and germanium using cross-linked polymers, Microelectron. Eng. 30, 513–516 (1996)CrossRefGoogle Scholar
  116. 9.116.
    G. Simon, A.M. Haghiri-Gosnet, F. Carcenac, H. Launois: Electroplating: an alternative transfer technology in the 20 nm range, Microelectron. Eng. 35, 51–54 (1997)CrossRefGoogle Scholar
  117. 9.117.
    K. Pfeiffer, M. Fink, G. Grützner, G. Bleidießel, H. Schulz, H.-C. Scheer: Multistep profiles by mix and match of nanoimprint and UV-lithography, Microelectron. Eng. 57/58, 381–387 (2001)CrossRefGoogle Scholar
  118. 9.118.
    X. Cheng, L.J. Guo: A combined-nanoimprint-and-photolithography patterning technique, Microelectron. Eng. 3/4, 277–282 (2004)CrossRefGoogle Scholar
  119. 9.119.
    X. Cheng, L.J. Guo: One-step lithography for various size patterns with a hybrid mask-mold, Microelectron. Eng. 3/4, 288–293 (2004)CrossRefGoogle Scholar
  120. 9.120.
    N. Kehagias, S. Zankovych, A. Goldschmidt, R. Kian, M. Zelsmann, C.M. Sotomayor Torres, K. Pfeiffer, G. Ahrens, G. Grützner: Embedded polymer waveguides: design and fabrication approaches, Superlattices Microstruct. 36(1-3), 201–210 (2004)CrossRefGoogle Scholar
  121. 9.121.
    W. Zhang, S.Y. Chou: Multilevel nanoimprint lithography with submicron alignment over 4 in. Si wafers, Appl. Phys. Lett. 79(6), 845–847 (2001)CrossRefGoogle Scholar
  122. 9.122.
    H. Schulz, M. Wissen, N. Roos, H.-C. Scheer, K. Pfeiffer, G. Grützner: Low-temperature wafer-scale `warmʼ embossing for mix and match with UV-lithography, SPIE Proc. 4688, 223–231 (2002)CrossRefGoogle Scholar
  123. 9.123.
    I. Martini, J. Dechow, M. Kamp, A. Forchel, J. Koeth: GaAs field effect transistors fabricated by imprint lithography, Microelectron. Eng. 60(3-4), 451–455 (2002)CrossRefGoogle Scholar
  124. 9.124.
    A.P. Kam, J. Seekamp, V. Solovyev, C. Clavijo Cedeño, A. Goldschmidt, C.M. Sotomayor Torres: Nanoimprinted organic field-effect transistors: fabrication, transfer mechanism and solvent effects on device characteristics, Microelectron. Eng. 73/74, 809–813 (2004)CrossRefGoogle Scholar
  125. 9.125.
    H. Schulz, A.S. Körbes, H.-C. Scheer, L.J. Balk: Combination of nanoimprint and scanning force lithography for local tailoring of sidewalls of nanometer devices, Microelectron. Eng. 53, 221–224 (2000)CrossRefGoogle Scholar
  126. 9.126.
    M. Tormen, L. Businaro, M. Altissimo, F. Romanato, S. Cabrini, F. Perennes, R. Proietti, H.-B. Sun, S. Kawata, E. Di Fabrizio: 3-D patterning by means of nanoimprinting, x-ray and two-photon lithography, Microelectron. Eng. 73/74, 535–541 (2004)CrossRefGoogle Scholar
  127. 9.127.
    X. Sun, L. Zhuang, W. Zhang, S.Y. Chou: Multilayer resist methods for nanoimprint lithography on nonflat surfaces, J. Vac. Sci. Technol. B 16(6), 3922–3925 (1998)CrossRefGoogle Scholar
  128. 9.128.
    F. van Delft: Bilayer resist used in e-beam lithography for deep narrow structures, Microelectron. Eng. 46, 369–373 (1999)CrossRefGoogle Scholar
  129. 9.129.
    L. Tan, Y.P. Kong, L.-L. Bao, X.D. Huang, L.J. Guo, S.W. Pang, A.F. Yee: Imprinting polymer film on patterned substrates, J. Vac. Sci. Technol. B 21(6), 2742–2748 (2003)CrossRefGoogle Scholar
  130. 9.130.
    B. Faircloth, H. Rohrs, R. Tiberio, R. Ruoff, R.R. Krchnavek: Bilayer nanoimprint lithography, J. Vac. Sci. Technol. B 18(4), 1866–1873 (2000)CrossRefGoogle Scholar
  131. 9.131.
    A. Lebib, M. Natali, S.P. Li, E. Cambril, L. Manin, Y. Chen, H.M. Janssen, R.P. Sijbesma: Control of the critical dimension with a trilayer nanoimprint lithography procedure, Microelectron. Eng. 57/58, 411–416 (2001)CrossRefGoogle Scholar
  132. 9.132.
    Y. Chen, K. Peng, Z. Cui: A lift-off process for high resolution patterns using PMMA/LOR resist stack, Microelectron. Eng. 73/74, 278–281 (2004)CrossRefGoogle Scholar
  133. 9.133.
    P. Carlberg, M. Graczyk, E.-L. Sawe, I. Maximov, M. Beck, L. Montelius: Lift-off process for nanoimprint lithography, Microelectron. Eng. 67/68, 203–207 (2003)CrossRefGoogle Scholar
  134. 9.134.
    W. Li, J.O. Tegenfeldt, L. Chen, R.H. Austin, S.Y. Chou, P.A. Kohl, J. Krotine, J.C. Sturm: Sacrificial polymers for nanofluidic channels in biological applications, Nanotechnology 14, 578–583 (2003)CrossRefGoogle Scholar
  135. 9.135.
    MicroChem Corp.: http://www.microchem.com/ (MicroChem Corp., Newton 2009)
  136. 9.136.
    M.W. Lin, H.-L. Chao, J. Hao, E.K. Kim, F. Palmieri, W.C. Kim, M. Dickey, P.S. Ho, C.G. Willson: Planarization for reverse-tone step and flash imprint lithography, Proc. SPIE 6151, 688–699 (2006)Google Scholar
  137. 9.137.
    W. Trybula: Sematech, AMRC, and nano, Nanoprint Nanoimpr. Technol. (NNT) Conf., Vienna (2004)Google Scholar
  138. 9.138.
    S. Johnson, D.J. Resnick, D. Mancini, K.J. Nordquist, W.J. Dauksher, K. Gehoski, J.H. Baker, L. Dues, A. Hooper, T.C. Bailey, S.V. Sreenivasan, J.G. Ekerdt, C.G. Willson: Fabrication of multi-tiered structures on step and flash imprint lithography templates, Microelectron. Eng. 67/68, 221–228 (2003)CrossRefGoogle Scholar
  139. 9.139.
    D. Suh, J. Rhee, H.H. Lee: Bilayer reversal imprint lithography: direct metal–polymer transfer, Nanotechnology 15, 1103–1107 (2004)CrossRefGoogle Scholar
  140. 9.140.
    Y.P. Kong, H.Y. Lowa, S.W. Pang, A.F. Yee: Duo-mold imprinting of three-dimensional polymeric structures, J. Vac. Sci. Technol. B 22(6), 3251–3265 (2004)CrossRefGoogle Scholar
  141. 9.141.
    T. Borzenko, M. Tormen, G. Schmidt, L.W. Molenkamp: Polymer bonding process for nanolithography, Appl. Phys. Lett. 79(14), 2246–2248 (2001)CrossRefGoogle Scholar
  142. 9.142.
    X.D. Huang, L.-R. Bao, X. Cheng, L.J. Guo, S.W. Pang, A.F. Yee: Reversal imprinting by transferring polymer from mold to substrate, J. Vac. Sci. Technol. B 20(6), 2872–2876 (2002)CrossRefGoogle Scholar
  143. 9.143.
    N. Kehagias, V. Reboud, G. Chansin, M. Zelsmann, C. Jeppesen, C. Schuster, M. Kubenz, F. Reuther, G. Grützner, C.M. Sotomayor Torres: Reverse-contact UV nanoimprint lithography for multilayered structure fabrication, Nanotechnology 18, 175303 (2007)CrossRefGoogle Scholar
  144. 9.144.
    micro resist technology GmbH: http://www.microresist.de/ (micro resist technology GmbH, Berlin 2009)
  145. 9.145.
    Polysciences Inc.: http://www.polysciences.com (Polysciences Inc., Warrington 2009)
  146. 9.146.
    Allresist GmbH: http://www.allresist.de (Allresist GmbH, Strausberg 2009)
  147. 9.147.
    C.-Y. Chao, L.J. Guo: Polymer microring resonators fabricated by nanoimprint technique, J. Vac. Sci. Technol. B 20, 2862–2866 (2002)CrossRefGoogle Scholar
  148. 9.148.
    Bayer AG: http://plastics.bayer.com (Bayer Material Science, Leverkusen 2009)
  149. 9.149.
    LG Dow Polycarbonate Ltd.: http://www.lg-dow.com (LG Dow Polycarbonate Ltd., Yeosu Chunnam 2009)
  150. 9.150.
    J. Tallal, D. Peyrade, F. Lazzarino, K. Berton, C. Perret, M. Gordon, C. Gourgon, P. Schiavone: Replication of sub-40 nm gap nanoelectrodes over an 8 in. substrate by nanoimprint lithography, Microelectron. Eng. 78/79, 676–681 (2005)CrossRefGoogle Scholar
  151. 9.151.
    Zeon Chemicals L. P.: http://www.zeonchemicals.com (Zeon Chemicals L. P., Louisville 2009)
  152. 9.152.
    Topas Advanced Polymers: http://www.topas.com/ (Topas Advanced Polymers, Florence 2009)
  153. 9.153.
    T. Nielsen, D. Nilsson, F. Bundgaard, P. Shi, P. Szabo, O. Geschke, A. Kristensen: Nanoimprint lithography in the cyclic olefin copolymer, Topas, a highly UV-transparent and chemically resistant thermoplast, J. Vac. Sci. Technol. B 22, 1770–1775 (2004)CrossRefGoogle Scholar
  154. 9.154.
    B. Simmons, B. Lapizco-Encinas, R. Shediac, J. Hachman, J. Chames, J. Brazzle, J. Ceremuga, G. Fiechtner, E. Cummings, Y. Fintschenko: Polymeric insulator-based (electrodeless) dielectrophoresis (iDEP) for the monitoring of water-borne pathogens, Proc. MicroTAS 2, 171–173 (2004)Google Scholar
  155. 9.155.
    D. Nilsson, S. Balslev, A. Kristensen: A microfluidic dye laser fabricated by nanoimprint lithography in a highly transparent and chemically resistant cyclo-olefin copolymer (COC), J. Micromech. Microeng. 15, 296–300 (2005)CrossRefGoogle Scholar
  156. 9.156.
    K. Pfeiffer, M. Fink, G. Ahrens, G. Grützner, F. Reuther, J. Seekamp, S. Zankovych, C.M. Sotomayor Torres, I. Maximov, M. Beck, M. Graczyk, L. Montelius, H. Schulz, H.-C. Scheer, F. Steingrüber: Polymer stamps for nanoimprinting, Microelectron. Eng. 61/62, 393–398 (2002)CrossRefGoogle Scholar
  157. 9.157.
    M. Wissen, H. Schulz, N. Bogdanski, H.-C. Scheer, Y. Hirai, H. Kikuta, G. Ahrens, F. Reuther, K. Pfeiffer: UV curing of resists for warm embossing, Microelectron. Eng. 73/74, 184–189 (2004)CrossRefGoogle Scholar
  158. 9.158.
    Sumitomo Chemical Corp.: http://www.sumitomo-http://www.sumitomo-chem.co.jp/chem.co.jp/ (Sumitomo Chemical Corp., Sendai 2009)
  159. 9.159.
    S. Landis, N. Chaix, C. Gourgon, C. Perret, T. Leveder: Stamp design effect on 100 nm feature size for 8 inch nanoimprint lithography, Nanotechnology 17, 2701–2709 (2006)CrossRefGoogle Scholar
  160. 9.160.
    N. Chaix, C. Gourgon, S. Landis, C. Perret, M. Fink, F. Reuther, D. Mecerreyes: Influence of the molecular weight and imprint conditions on the formation of capillary bridges in nanoimprint lithography, Nanotechnology 17, 4082–4087 (2006)CrossRefGoogle Scholar
  161. 9.161.
    C.G. Willson, R.A. Dammel, A. Reiser: Photoresist materials: A historical perspective, Proc. SPIE 3049, 28–41 (1997)CrossRefGoogle Scholar
  162. 9.162.
    M.D. Stewart, C.G. Willson: Photoresists. In: Encyclopedia of Materials: Science and Technology, ed. by K.H.J. Buschow, R.W. Cahn, M.C. Flemings, B. Ilschner, E.J. Kramer, H.E.H. Meijer, S. Mahajan (Routledge, New York 2001) pp. 6973–6978Google Scholar
  163. 9.163.
    K. Pfeiffer, G. Bleidießel, G. Grützner, H. Schulz, T. Hoffmann, H.-C. Scheer, C.M. Sotomayor Torres, J. Ahopelto: Suitability of new polymer materials with adjustable glass temperature for nano-imprinting, Microelectron. Eng. 46, 431–434 (1999)CrossRefGoogle Scholar
  164. 9.164.
    F. Gaboriau, M.-C. Peignon, A. Barreau, G. Turban, C. Cardinaud, K. Pfeiffer, G. Bleidießel, G. Grutzner: High density fluorocarbon plasma etching of new resists suitable for nanoimprint lithography, Microelectron. Eng. 53, 501–505 (2000)CrossRefGoogle Scholar
  165. 9.165.
    F. Gottschalch, T. Hoffmann, C.M. Sotomayor Torres, H. Schulz, H.-C. Scheer: Polymer issues in nanoimprinting technique, Solid-State Electron. 43, 1079–1083 (1999)CrossRefGoogle Scholar
  166. 9.166.
    H. Schulz, H.-C. Scheer, T. Hoffmann, C.M. Sotomayor Torres, K. Pfeiffer, G. Bleidießel, G. Grützner, C. Cardinaud, F. Gaboriau, M.-C. Peignon, J. Ahopelto, B. Heidari: New polymer materials for nanoimprinting, J. Vac. Sci. Technol. B 18(4), 1861–1865 (2000)CrossRefGoogle Scholar
  167. 9.167.
    D. Lyebyedyev, H. Schulz, H.-C. Scheer: Characterisation of new thermosetting polymer materials for nanoimprint lithography, Mater. Sci. Eng. C 15(1/2), 241–243 (2001)CrossRefGoogle Scholar
  168. 9.168.
    K. Pfeiffer, F. Reuther, M. Fink, G. Grützner, P. Carlberg, I. Maximov, L. Montelius, J. Seekamp, S. Zankovych, C.M. Sotomayor Torres, H. Schulz, H.-C. Scheer: A comparison of thermally and photochemically cross-linked polymers for nanoimprinting, Microelectron. Eng. 67/68, 266–273 (2003)CrossRefGoogle Scholar
  169. 9.169.
    C.D. Schaper, A. Miahnahri: Polyvinyl alcohol templates for low cost, high resolution, complex printing, J. Vac. Sci. Technol. B 22(6), 3323–3326 (2002)CrossRefGoogle Scholar
  170. 9.170.
    R.M. Reano, Y.P. Kong, H.Y. Low, L. Tan, F. Wang, S.W. Pang, A.F. Yee: Stability of functional polymers after plasticizer-assisted imprint lithography, J. Vac. Sci. Technol. B 22(6), 3294–3299 (2002)CrossRefGoogle Scholar
  171. 9.171.
    B.K. Long, B.K. Keitz, C.G. Willson: Materials for step and flash imprint lithography (S-FIL), J. Mater. Chem. 17, 3575–3580 (2007)CrossRefGoogle Scholar
  172. 9.172.
    J. Hao, M. Lin, F. Palmieri, Y. Nishimura, H.-L. Chao, M.D. Stewart, A. Collins, K. Jen, C.G. Willson: Photocurable silicon-base material for imprinting lithography, Proc. SPIE 6517, 6517–6580 (2007)Google Scholar
  173. 9.173.
    S. Johnson, R. Burns, E.K. Kim, M. Dickey, G. Schmid, J. Meiring, S. Burns, C.G. Willson, D. Convey, Y. Wei, P. Fejes, K. Gehoski, D. Mancini, K. Nordquist, W.J. Dauksher, D.J. Resnick: Effects of etch barrier densification on step and flash imprint lithography, J. Vac. Sci. Technol. B 23(6), 2553–2556 (2005)CrossRefGoogle Scholar
  174. 9.174.
    F. Xu, N. Stacey, M. Watts, V. Truskett, I. McMackin, J. Choi, P. Schumaker, E. Thompson, D. Babbs, S.V. Sreenivasan, G. Willson, N. Schumaker: Development of imprint materials for the step and flash imprint lithography process, Proc. SPIE 5374, 232–241 (2004)CrossRefGoogle Scholar
  175. 9.175.
    M. Vogler, S. Wiedenberg, M. Mühlberger, I. Bergmair, T. Glinsner, H. Schmidt, E.-B. Kley, G. Grützner: Development of a novel, low-viscosity UV-curable polymer system for UV-nanoimprint lithography, Microelectron. Eng. 84, 984–988 (2007)CrossRefGoogle Scholar
  176. 9.176.
    P. Voisin, M. Zelsmann, R. Cluzel, E. Pargon, C. Gourgon, J. Boussey: Characterisation of ultraviolet nanoimprint dedicated resists, Microelectron. Eng. 84, 967–972 (2007)CrossRefGoogle Scholar
  177. 9.177.
    H. Schmitt, L. Frey, H. Ryssel, M. Rommel, C. Lehrer: UV nanoimprint materials: surface energies, residual layers, and imprint quality, J. Vac. Sci. Technol. B 25(3), 785–790 (2007)CrossRefGoogle Scholar
  178. 9.178.
    W.-C. Liao, S.L.-C. Hsu: A novel liquid thermal polymerization resist for nanoimprint lithography with low shrinkage and high flowability, Nanotechnology 18, 065303 (2007)CrossRefGoogle Scholar
  179. 9.179.
    F.A. Houle, C.T. Rettner, D.C. Miller, R. Sooriyakumaran: Antiadhesion considerations for UV nanoimprint lithography, Appl. Phys. Lett. 90, 213103 (2007)CrossRefGoogle Scholar
  180. 9.180.
    F.A. Houle, E. Guyer, D.C. Miller, R. Dauskardt: Adhesion between template materials and UV-cured nanoimprint resists, J. Vac. Sci. Technol. B 25(4), 1179–1185 (2007)CrossRefGoogle Scholar
  181. 9.181.
    M. Köhler: Etching in Microsystem Technology (Wiley-VCH, Weinheim 1999)CrossRefGoogle Scholar
  182. 9.182.
    H. Schift, J. Gobrecht, B. Satilmis, J. Söchtig, F. Meier, W. Raupach: Nanoreplikation im Verbund: Ein Schweizer Netzwerk, Kunststoffe 94, 22–26 (2004), in German (English vers.: Nanoreplication in a Network, Kunstst. Plast Eur. 94, 1-4 (2004))Google Scholar
  183. 9.183.
    S. Park, H. Schift, H.H. Solak, J. Gobrecht: Stamps for nanoimprint lithography by extreme ultraviolet interference lithography, J. Vac. Sci. Technol. B 22(6), 3246–3250 (2004)CrossRefGoogle Scholar
  184. 9.184.
    K.A. Lister, B.G. Casey, P.S. Dobson, S. Thoms, D.S. Macintyre, C.D.W. Wilkinson, J.M.R. Weaver: Pattern transfer of a 23 nm-period grating and sub-15 nm dots into CVD diamond, Microelectron. Eng. 73/74, 319–322 (2004)CrossRefGoogle Scholar
  185. 9.185.
    J. Taniguchi, Y. Tokano, I. Miyamoto, M. Komuro, H. Hiroshima: Diamond nanoimprint lithography, Nanotechnology 13, 592–596 (2002)CrossRefGoogle Scholar
  186. 9.186.
    Y. Hirai, S. Yoshida, N. Takagi, Y. Tanaka, H. Yabe, K. Sasaki, H. Sumitani, K. Yamamoto: High aspect pattern fabrication by nano imprint lithography using fine diamond mold, Jpn. J. Appl. Phys. 42(6B), 3863–3866 (2003)CrossRefGoogle Scholar
  187. 9.187.
    S.W. Pang, T. Tamamura, M. Nakao, A. Ozawa, H. Masuda: Direct nano-printing on Al substrate using SiC mold, J. Vac. Sci. Technol. B 16, 1145–1149 (1998)CrossRefGoogle Scholar
  188. 9.188.
    J. Gao, M.B. Chan-Park, D. Xie, Y. Yan, W. Zhou, B.K.A. Ngoi, C.Y. Yue: UV embossing of submicron patterns on biocompatible polymeric films using a focused ion beam fabricated mold, Chem. Mater. 16(6), 956–958 (2004)CrossRefGoogle Scholar
  189. 9.189.
    M.M. Alkaisi, R.J. Blaikie, S.J. McNab: Low temperature nanoimprint lithography using silicon nitride molds, Microelectron. Eng. 57/58, 367–373 (2001)CrossRefGoogle Scholar
  190. 9.190.
    Y. Hirai, S. Harada, S. Isaka, M. Kobayashi, Y. Tanaka: Nano-imprint lithography using replicated mold by Ni electroforming, Jpn. J. Appl. Phys. 41(6B), 4186–4189 (2002)CrossRefGoogle Scholar
  191. 9.191.
    Z. Yu, L. Chen, W. Wu, H. Ge, S.Y. Chou: Fabrication of nanoscale gratings with reduced line edge roughness using nanoimprint lithography, J. Vac. Sci. Technol. B 21(5), 2089–2092 (2003)CrossRefGoogle Scholar
  192. 9.192.
    N. Roos, H. Schulz, L. Bendfeldt, M. Fink, K. Pfeiffer, H.-C. Scheer: First and second generation purely thermoset stamps for hot embossing, Microelectron. Eng. 61/62, 399–405 (2002)CrossRefGoogle Scholar
  193. 9.193.
    N. Roos, H. Schulz, M. Fink, K. Pfeiffer, F. Osenberg, H.-C. Scheer: Performance of 4ʼʼ wafer-scale thermoset working stamps in hot embossing lithography, Proc. SPIE 4688, 232–239 (2002)CrossRefGoogle Scholar
  194. 9.194.
    H. Schift, S. Park, J. Gobrecht, S. Saxer, F. Meier, W. Raupach, K. Vogelsang: Hybrid bendable stamp copies for molding fabricated by nanoimprint, Microelectron. Eng. 78/79, 605–611 (2005)CrossRefGoogle Scholar
  195. 9.195.
    R.W. Jaszewski, H. Schift, B. Schnyder, A. Schneuwly, P. Gröning: The deposition on anti-adhesive ultra-thin teflon-like films and their interaction with polymers during hot embossing, Appl. Surf. Sci. 143, 301–308 (1999)CrossRefGoogle Scholar
  196. 9.196.
    R.W. Jaszewski, H. Schift, P. Gröning, G. Margaritondo: Properties of thin anti-adhesive films used for the replication of microstructures in polymers, Microelectron. Eng. 35, 381–384 (1997)CrossRefGoogle Scholar
  197. 9.197.
    U. Srinivasan, M.R. Houston, R.T. Howe, R. Maboudian: Alkyltrichlorosilane-based self-assembled monolayer films for stiction reduction in silicon micromachines, J. Microelectromech. Syst. 7, 252–260 (1998)CrossRefGoogle Scholar
  198. 9.198.
    H. Schulz, F. Osenberg, J. Engemann, H.-C. Scheer: Mask fabrication by nanoimprint lithography using antisticking layers, Proc. SPIE 3996, 244–249 (2000)CrossRefGoogle Scholar
  199. 9.199.
    M. Beck, M. Graczyk, I. Maximov, E.-L. Sarwe, T.G.I. Ling, M. Keil, L. Montelius: Improving stamps for 10 nm level wafer scale nanoimprint lithography, Microelectron. Eng. 61/62, 441–448 (2002)CrossRefGoogle Scholar
  200. 9.200.
    H. Schift, S. Saxer, S. Park, C. Padeste, U. Pieles, J. Gobrecht: Controlled co-evaporation of silanes for nanoimprint stamps, Nanotechnology 16, S171–S175 (2005)CrossRefGoogle Scholar
  201. 9.201.
    M. Keil, M. Beck, G. Frennesson, E. Theander, E. Bolmsjö, L. Montelius, B. Heidari: Process development and characterization of antisticking layers on nickel-based stamps designed for nanoimprint lithography, J. Vac. Sci. Technol. B 22(6), 3283–3287 (2002)CrossRefGoogle Scholar
  202. 9.202.
    S. Park, H. Schift, C. Padeste, B. Schnyder, R. Kötz, J. Gobrecht: Anti-adhesive layers on nickel stamps for nanoimprint lithography, Microelectron. Eng. 73/74, 196–201 (2004)CrossRefGoogle Scholar
  203. 9.203.
    ABCR GmbH: http://www.abcr.de/ (ABCR GmbH, Karlsruhe 2009)
  204. 9.204.
    B. Heidari, I. Maximov, E.-L. Sarwe, L. Montelius: Large scale nanolithography using imprint lithography, J. Vac. Sci. Technol. B 17, 2961–2964 (1999)CrossRefGoogle Scholar
  205. 9.205.
    B. Heidari, I. Maximov, L. Montelius: Nanoimprint lithography at the 6 in. wafer scale, J. Vac. Sci. Technol. B 18(6), 3557–3560 (2000)CrossRefGoogle Scholar
  206. 9.206.
    N. Roos, T. Luxbacher, T. Glinsner, K. Pfeiffer, H. Schulz, H.-C. Scheer: Nanoimprint lithography with a commercial 4 inch bond system for hot embossing, Proc. SPIE 4343, 427–436 (2001)CrossRefGoogle Scholar
  207. 9.207.
    L. Bendfeldt, H. Schulz, N. Roos, H.-C. Scheer: Groove design of vacuum chucks for hot embossing lithography, Microelectron. Eng. 61/62, 455–459 (2002)CrossRefGoogle Scholar
  208. 9.208.
    T. Haatainen, J. Ahopelto, G. Grützner, M. Fink, K. Pfeiffer: Step and stamp imprint lithography using a commercial flip chip bonder, Proc. SPIE 3997, 874–879 (2000)CrossRefGoogle Scholar
  209. 9.209.
    H. Tana, A. Gilbertson, S.Y. Chou: Roller nanoimprint lithography, J. Vac. Sci. Technol. B 16(6), 3926–3928 (1998)CrossRefGoogle Scholar
  210. 9.210.
    M. Tormen: A nano impression lithographic process which involves the use of a die having a region able to generate heat, European Patent PCT/IB 2004/002120 (2004)Google Scholar
  211. 9.211.
    S.Y. Chou, C. Keimel, J. Gu: Ultrafast and direct imprint of nanostructures in silicon, Nature 417, 835–837 (2002)CrossRefGoogle Scholar
  212. 9.212.
    J.J. Shamaly, V.F. Bunze: I-line to DUV transition for critical levels, Microelectron. Eng. 30, 87–93 (1996)CrossRefGoogle Scholar
  213. 9.213.
    J.E. Bjorkholm: EUV lithography – The successor to optical lithography?, Intel Technol. J. Q3 (1998), http://www.intel.com/technology/itj/q31998/articles/art_4.htm
  214. 9.214.
    D. Wachenschwanz, W. Jiang, E. Roddick, A. Homola, P. Dorsey, B. Harper, D. Treves, C. Bajorek: Design of a manufacturable discrete track recording medium, IEEE Trans. Mag. 41, 670–675 (2005)CrossRefGoogle Scholar
  215. 9.215.
    G.M. McClelland, M.W. Hart, C.T. Rettner, M.E. Best, K.R. Carter, B.D. Terris: Nanoscale patterning of magnetic islands by imprint lithography using a flexible mold, Appl. Phys. Lett. 81, 1483–1485 (2002)CrossRefGoogle Scholar
  216. 9.216.
    G.F. Cardinale, J.L. Skinner, A.A. Talin, R.W. Brocato, D.W. Palmer, D.P. Mancini, W.J. Dauksher, K. Gehoski, N. Le, K.J. Nordquist, D.J. Resnick: Fabrication of a surface acoustic wave-based correlator using step-and-flash imprint lithography, J. Vac. Sci. Technol. B 22, 3265–3270 (2004)CrossRefGoogle Scholar
  217. 9.217.
    S.-W. Ahn, K.-D. Lee, J.-S. Kim, S.H. Kim, S.H. Lee, J.-D. Park, P.-W. Yoon: Fabrication of subwavelength aluminum wire grating using nanoimprint lithography and reactive ion etching, Microelectron. Eng. 78/79, 314–318 (2005)CrossRefGoogle Scholar
  218. 9.218.
    J. Seekamp, S. Zankovych, A.H. Helfer, P. Maury, C.M. Sotomayor Torres, G. Böttger, C. Liguda, M. Eich, B. Heidari, L. Montelius, J. Ahopelto: Nanoimprinted passive optical devices, Nanotechnology 13, 581–586 (2002)CrossRefGoogle Scholar
  219. 9.219.
    C.M. Sotomayor Torres, S. Zankovych, J. Seekamp, A.P. Kam, C. Clavijo Cedeño, T. Hoffmann, J. Ahopelto, F. Reuther, K. Pfeiffer, G. Bleidießel, G. Grützner, M.V. Maximov, B. Heidari: Nanoimprint lithography: An alternative nanofabrication approach, Mater. Sci. Eng. C 23, 23–31 (2003)CrossRefGoogle Scholar
  220. 9.220.
    J. Wang, X. Sun, L. Chen, S.Y. Chou: Direct nanoimprint of submicron organic light-emitting structures, Appl. Phys. Lett. 75, 2767–2769 (1999)CrossRefGoogle Scholar
  221. 9.221.
    X. Cheng, Y. Hong, J. Kanicki, L.J. Guo: High-resolution organic polymer light-emitting pixels fabricated by imprinting technique, J. Vac. Sci. Technol. B 20, 2877–2880 (2002)CrossRefGoogle Scholar
  222. 9.222.
    D. Pisignano, L. Persano, E. Mele, P. Visconti, R. Cingolani, G. Gigli, G. Barbarella, L. Favaretto: Emission properties of printed organic semiconductor lasers, Opt. Lett. 30, 260–262 (1995)CrossRefGoogle Scholar
  223. 9.223.
    D. Nilsson, T. Nielsen, A. Kristensen: Solid state micro-cavity dye lasers fabricated by nanoimprint lithography, Rev. Sci. Instrum. 75, 4481–4486 (2004)CrossRefGoogle Scholar
  224. 9.224.
    C. Clavijo Cedeño, J. Seekamp, A.P. Kam, T. Hoffmann, S. Zankovych, C.M. Sotomayor Torres, C. Menozzi, M. Cavallini, M. Murgia, G. Ruani, F. Biscarini, M. Behl, R. Zentel, J. Ahopelto: Nanoimprint lithography for organic electronics, Microelectron. Eng. 61/62, 25–31 (2002)CrossRefGoogle Scholar
  225. 9.225.
    A. Manz, N. Graber, H.M. Widmer: Miniaturized total chemical analysis systems: A novel concept for chemical sensing, Sens. Actuators B 1, 244–248 (1990)CrossRefGoogle Scholar
  226. 9.226.
    E. Verpoorte, N.F. De Rooij: Microfluidics meets MEMS, Proc. IEEE 91, 930–953 (2003)CrossRefGoogle Scholar
  227. 9.227.
    A. Pepin, P. Youinou, V. Studer, A. Lebib, Y. Chen: Nanoimprint lithography for the fabrication of DNA electrophoresis chips, Microelectron. Eng. 61/62, 927–932 (2002)CrossRefGoogle Scholar
  228. 9.228.
    J.O. Tegenfeldt, C. Prinz, H. Cao, R.L. Huang, R.H. Austin, S.Y. Chou, E.C. Cox, J.C. Sturm: Micro- and nanofluidics for DNA analysis, Anal. Bioanal. Chem. 378, 1678–1692 (2004)CrossRefGoogle Scholar
  229. 9.229.
    S.Y. Chou: Patterned magnetic nanostructures and quantized magnetic disks, Proc. IEEE 85, 652–671 (1997)CrossRefGoogle Scholar
  230. 9.230.
    M.N. Baibich, J.M. Broto, A. Fert, F. Nguyen Van Dau, F. Petroff, P. Eitenne, G. Creuzet, A. Friederich, J. Chazelas: Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices, Phys. Rev. Lett. 61, 2472–2475 (1988)CrossRefGoogle Scholar
  231. 9.231.
    Y. Li, A.K. Menon: Magnetic recording technologies: Overview. In: Encyclopedia of Materials: Science and Technology, ed. by K.H.J. Buschow (Elsevier, Amsterdam 2001) pp. 4948–4957Google Scholar
  232. 9.232.
    L.F. Shew: Discrete tracks for saturation magnetic recording, IEEE Trans. Broadcast Telev. Receiv. 9, 56–62 (1963)CrossRefGoogle Scholar
  233. 9.233.
    A.K. Menon: Interface tribology for 100 Gb/in2, Tribol. Int. 33, 299–308 (2000)CrossRefGoogle Scholar
  234. 9.234.
    Y. Soeno, M. Moriya, K. Ito, K. Hattori, A. Kaizu, T. Aoyama, M. Matsuzaki, H. Sakai: Feasibility of discrete track perpendicular media for high track density recording, IEEE Trans. Magn. 39, 1967–1971 (2003)CrossRefGoogle Scholar
  235. 9.235.
    S.Y. Chou, M. Wei, P.R. Krauss, P.B. Fisher: Study of nanoscale magnetic structures fabricated using electron beam lithography and quantum magnetic disk, J. Vac. Sci. Technol. B 12, 3695–3698 (1994)CrossRefGoogle Scholar
  236. 9.236.
    R.L. White, R.M.H. Newt, R.F.W. Pease: Patterned media: A viable route to 50 Gbit/in2 and up for magnetic recording?, IEEE Trans. Magn. 33, 990–995 (1997)CrossRefGoogle Scholar
  237. 9.237.
    B.D. Terris, T. Thomson: Nanofabricated and self-assembled magnetic structures as data storage media, J. Phys. D 38, R199–R222 (2005)CrossRefGoogle Scholar
  238. 9.238.
    Z.Z. Bandic, E.A. Dobisz, T.-W. Wu, T.R. Albrecht: Patterning on hard disk drives, Solid State Technol. Sept, 57–59 (2006)Google Scholar
  239. 9.239.
    A. Kikitsu, Y. Kamata, M. Sakurai, K. Naito: Recent progress of patterned media, IEEE Trans. Magn. 43, 3685–3688 (2007)CrossRefGoogle Scholar
  240. 9.240.
    M. Natali, A. Lebib, E. Cambril, Y. Chen, I.L. Prejbeanu, K. Ounadjela: Nanoimprint lithography of high-density cobalt dot patterns for fine tuning of dipole interactions, J. Vac. Sci. Technol. B 19, 2779–2783 (2001)CrossRefGoogle Scholar
  241. 9.241.
    J. Moritz, B. Dieny, J.P. Nozieres, S. Landis, A. Lebib, Y. Chen: Domain structure in magnetic dots prepared by nanoimprint and e-beam lithography, J. Appl. Phys. 91, 7314–7316 (2002)CrossRefGoogle Scholar
  242. 9.242.
    P. Lalanne, M. Hutley: Artificial media optical properties-subwavelength scale. In: Enclopedia of Optical Engineering, ed. by R.G. Driggers (Dekker, New York 2003) pp. 62–71Google Scholar
  243. 9.243.
    http://www.pcmag.com/ (last accessed December 9, 2009)
  244. 9.244.
    Z. Yu, W. Wu, L. Chen, S. Chou: Fabrication of large area 100 nm pitch grating by spatial frequency doubling an nanoimprint lithography for subwavelength optical applications, J. Vac. Sci. Technol. B 19, 2816–2819 (2001)CrossRefGoogle Scholar
  245. 9.245.
    MOXTEK Inc.: http://www.moxtek.com/ (last accessed December 9, 2009)
  246. 9.246.
    NanoOpto, API Nanotronics Corp.: http://www.nanoopto.com/ (last accessed December 9, 2009)
  247. 9.247.
    A.A. Erchak, D.J. Ripin, S. Fan, P. Rakich, J.D. Joannopoulos, E.P. Ippen, G.S. Petrich, L.A. Kolodziejski: Enhanced coupling to vertical radiation using a two-dimensional photonic crystal in a semiconductor light-emitting diode, Appl. Phys. Lett. 78, 563–565 (2001)CrossRefGoogle Scholar
  248. 9.248.
    S.H. Kim, K.-D. Lee, J.-Y. Kim, M.-K. Kwon, S.-J. Park: Fabrication of photonic crystal structures on light emitting diodes by nanoimprint lithography, Nanotechnology 18, 055306 (2007)CrossRefGoogle Scholar
  249. 9.249.
    L.J. Guo, X. Cheng, C.Y. Chao: Fabrication of photonic nanostructures in nonlinear optical polymers, J. Mod. Opt. 49, 663–673 (2002)CrossRefGoogle Scholar
  250. 9.250.
    C.-Y. Chao, L.J. Guo: reduction of surface scattering loss in polymer microrings using thermal-reflow technique, IEEE Photon. Technol. Lett. 16, 1498–1500 (2004)CrossRefGoogle Scholar
  251. 9.251.
    H.C. Hoch, L.W. Jelinski, H.G. Craighead (Eds.): Nanofabrication and Biosystems: Integrating Materials Science, Engineering, and Biology (Cambridge Univ. Press, Cambridge 1996)Google Scholar
  252. 9.252.
    H.G. Craighead: Nanoelectromechanical systems, Science 290, 1532–1535 (2000)CrossRefGoogle Scholar
  253. 9.253.
    L.R. Huang, J.O. Tegenfeldt, J.J. Kraeft, J.C. Sturm, R.H. Austin, E.C. Cox: A DNA prism for high-speed continous frationation of large DNA molecules, Nat. Biotechnol. 20, 1048–1051 (2002)CrossRefGoogle Scholar
  254. 9.254.
    H.G. Craighead: Nanostructure science and technology: Impact and prospects for biology, J. Vac. Sci. Technol. A 21, S216–S221 (2003)CrossRefGoogle Scholar
  255. 9.255.
    J.O. Tegenfeldt, C. Prinz, H. Cao, S. Chou, W.W. Reisner, R. Riehn, Y.M. Wang, E.C. Cox, J.C. Sturm, P. Silberzan, R.H. Austin: The dynamics of genomic-length DNA molecules in 100-nm channels, Proc. Natl. Acad. Sci. USA 101, 10979–10983 (2004)CrossRefGoogle Scholar
  256. 9.256.
    L.J. Guo, X. Cheng, C.-F. Chou: Fabrication of size-controllable nanofluidic channels by nanoimprinting and its application for DNA stretching, Nano Lett. 4, 69–73 (2004)CrossRefGoogle Scholar
  257. 9.257.
    C. Bustamante, J.F. Marko, E.D. Siggia, S. Smith: Entropic elasticity of λ-phage DNA, Science 265, 1599–1600 (1994)CrossRefGoogle Scholar
  258. 9.258.
    W. Kern, D.A. Puotinen: RCA Rev. 31, 187–206 (1970)Google Scholar
  259. 9.259.
    L.H. Thamdrup, A. Klukowska, A. Kristensen: Stretching DNA in polymer nanochannels fabricated by thermal imprint in PMMA, Nanotechnology 19, 125301 (2008)CrossRefGoogle Scholar
  260. 9.260.
    M.J. Dalby, N. Gadegaard, R. Tare, A. Andar, M.O. Riehle, P. Herzyk, C.D.W. Wilkinson, R.O.C. Oreffo: The control of human mesenchymal cell differentiation using nanoscale symmetry and disorder, Nat. Mater. 6, 997–1003 (2007)CrossRefGoogle Scholar
  261. 9.261.
    K. Seunarine, D.O. Meredith, M.O. Riehle, C.D.W. Wilkinson, N. Gadegaard: Biodegradable polymer tubes with lithographically controlled 3-D micro- and nanotopography, Microelectron. Eng. 85(5/6), 1350–1354 (2008)CrossRefGoogle Scholar
  262. 9.262.
    A. Kapr: Johann Gutenberg: The Man and His Invention (Scolar, London 1996), http://www.gutenberg.de/publ.htm Google Scholar
  263. 9.263.
    EVGroup: http://www.evgroup.com/ (EVGroup, St. Florian 2009)
  264. 9.264.
    SÜSS Microtec: http://www.suss.com/ (SÜSS Microtec, Garching 2009)
  265. 9.265.
    Obducat: http://www.obducat.com/ (Obducat, Malmö 2009)
  266. 9.266.
    Smart Equipment Technology S.A.S.: http://www.set-sas.fr/ (Smart Equipment Technology S.A.S., Saint Jeoire 2009)
  267. 9.267.
    Jenoptik: http://www.jenoptik.com (Jenoptik, Jena 2009)
  268. 9.268.
    Molecular Imprints: http://www.molecularimprints.com/ (Molecular Imprints, Austin 2009)
  269. 9.269.
    Nanonex: http://www.nanonex.com/ (Nanonex, Monmouth Junction 2009)
  270. 9.270.
    Eulitha: http://www.eulitha.com/ (Eulitha, Villigen 2009)
  271. 9.271.
    NIL Technology: http://www.nilt.com/ (NIL Technology, Kongens Lyngby 2009)
  272. 9.272.
    Sematech: http://www.sematech.org/ (Sematech, Austin 2009)
  273. 9.273.
    M. Beck, B. Heidari: Nanoimprint lithography for high volume HDI manufacturing, OnBoard Technol. Sept., 52–55 (2006), http://www.onboard-technology.com/ Google Scholar
  274. 9.274.
    L. Olsson: Method and device for transferring a pattern, European Patent PCT/SE 2003/001003 (2002)Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Laboratory for Micro- and NanotechnologyPaul Scherrer InstituteVilligen PSISwitzerland
  2. 2.DTU NanotechTechnical University of DenmarkKongens LyngbyDenmark

Personalised recommendations