Advertisement

Lotus Effect: Surfaces with Roughness-Induced Superhydrophobicity, Self-Cleaning, and Low Adhesion

Abstract

Superhydrophobic surfaces exhibit extreme water-repellent properties. These surfaces with high contact angle and low contact angle hysteresis also exhibit a self-cleaning effect and low drag for fluid flow. These surfaces are of interest in various applications, including self-cleaning windows, exterior paints for buildings, navigation ships, textiles, solar panels, and applications requiring antifouling and a reduction in fluid flow, e.g., in micro/nanochannels. Superhydrophobic surfaces can also be used for energy conservation and energy conversion, such as in the development of a microscale capillary engine. Superhydrophobic surfaces prevent the formation of menisci at a contacting interface and can be used to minimize adhesion and stiction. Certain plant leaves, notably lotus leaves, are known to be superhydrophobic and self-cleaning due to hierarchical roughness and the presence of wax tubules on the leaf surface. This phenomenon is known as the lotus effect. Superhydrophobic and self-cleaning surfaces can be produced by using roughness combined with hydrophobic coatings. In this chapter, the theory of roughness-induced superhydrophobicity and self-cleaning is presented, followed by the characterization data of natural leaf surfaces. Micro-, nano-, and hierarchical patterned structures have been fabricated, and the wetting properties and adhesion have been characterized to validate models and provide design guidelines for superhydrophobic and self-cleaning surfaces. In addition, a model of contact angle for oleophilic/phobic surfaces is presented. The wetting behavior of fabricated surfaces is investigated. Fundamental physical mechanisms of wetting responsible for the transition between various wetting regimes, contact angle, and contact angle hysteresis are also discussed.

Abbreviations

AFM

atomic force microscope

AFM

atomic force microscopy

AKD

alkylketene dimer

BCH

brucite-type cobalt hydroxide

CAH

contact angle hysteresis

CBD

chemical bath deposition

CCD

charge-coupled device

CNT

carbon nanotube

CVD

chemical vapor deposition

DI

deionized

DI

digital instrument

ESEM

environmental scanning electron microscope

FAA

formaldehyde–acetic acid–ethanol

GSED

gaseous secondary-electron detector

HAR

high aspect ratio

ITO

indium tin oxide

LA

lauric acid

LAR

low aspect ratio

LBL

layer-by-layer

MEMS

microelectromechanical system

MWCNT

multiwall carbon nanotube

NADIS

nanoscale dispensing

NEMS

nanoelectromechanical system

OTS

octadecyltrichlorosilane

P–V

peak-to-valley

PAA

poly(acrylic acid)

PAA

porous anodic alumina

PAH

poly(allylamine hydrochloride)

PC

polycarbonate

PDMS

polydimethylsiloxane

PECVD

plasma-enhanced chemical vapor deposition

PFDTES

perfluorodecyltriethoxysilane

PFOS

perfluorooctanesulfonate

PMMA

poly(methyl methacrylate)

PPy

polypyrrole

PS-PDMS

poly(styrene-b-dimethylsiloxane)

PS

polystyrene

PTFE

polytetrafluoroethylene

PUA

polyurethane acrylate

PVD

physical vapor deposition

RH

relative humidity

RMS

root mean square

SAM

scanning acoustic microscopy

SAM

self-assembled monolayer

SEM

scanning electron microscope

SEM

scanning electron microscopy

TMS

tetramethylsilane

TMS

trimethylsilyl

UV

ultraviolet

References

  1. 44.1.
    A.V. Adamson: Physical Chemistry of Surfaces (Wiley, New York 1990)Google Scholar
  2. 44.2.
    J.N. Israelachvili: Intermolecular and Surface Forces, 2nd edn. (Academic, London 1992)Google Scholar
  3. 44.3.
    B. Bhushan: Principles and Applications of Tribology (Wiley, New York 1999)Google Scholar
  4. 44.4.
    B. Bhushan: Introduction to Tribology (Wiley, New York 2002)Google Scholar
  5. 44.5.
    M. Nosonovsky, B. Bhushan: Multiscale Dissipative Mechanisms and Hierarchical Surfaces: Friction, Superhydrophobicity, and Biomimetics (Springer, Berlin, Heidelberg 2008)MATHGoogle Scholar
  6. 44.6.
    C.W. Extrand: Model for contact angle and hysteresis on rough and ultraphobic surfaces, Langmuir 18, 7991–7999 (2002)CrossRefGoogle Scholar
  7. 44.7.
    J. Kijlstra, K. Reihs, A. Klami: Roughness and topology of ultra-hydrophobic surfaces, Colloids Surf. A 206, 521–529 (2002)CrossRefGoogle Scholar
  8. 44.8.
    B. Bhushan, Y.C. Jung: Wetting, adhesion and friction of superhydrophobic and hydrophilic leaves and fabricated micro-/nanopatterned surfaces, J. Phys. Condens. Matter 20, 225010 (2008)CrossRefGoogle Scholar
  9. 44.9.
    M. Nosonovsky, B. Bhushan: Multiscale friction mechanisms and hierarchical surfaces in nano- and bio-tribology, Mater. Sci. Eng. R 58, 162–193 (2007)CrossRefGoogle Scholar
  10. 44.10.
    M. Nosonovsky, B. Bhushan: Roughness-induced superhydrophobicity: A way to design nonadhesive surfaces, J. Phys. Condens. Matter 20, 225009 (2008)CrossRefGoogle Scholar
  11. 44.11.
    M. Nosonovsky, B. Bhushan: Biologically-inspired surfaces: Broadening the scope of roughness, Adv. Funct. Mater. 18, 843–855 (2008)CrossRefGoogle Scholar
  12. 44.12.
    B. Bhushan, Y.C. Jung, K. Koch: Self-cleaning efficiency of artificial superhydrophobic surfaces, Langmuir 25, 3240–3248 (2009)CrossRefGoogle Scholar
  13. 44.13.
    M. Nosonovsky, B. Bhushan: Superhydrophobicity for energy conversion and conservation applications, J. Adhes. Sci. Technol. 22, 2105–2115 (2008)Google Scholar
  14. 44.14.
    M. Nosonovsky, B. Bhushan: Multiscale effects and capillary interactions in functional biomimetic surfaces for energy conversion and green engineering, Philos. Trans. R. Soc. A 367, 1511–1539 (2009)CrossRefGoogle Scholar
  15. 44.15.
    M. Nosonovsky, B. Bhushan: Superhydrophobic surfaces and emerging applications: Nonadhesion, energy, green engineering, Curr. Opin. Colloid Interface Sci. 14(4), 270–280 (2009)CrossRefGoogle Scholar
  16. 44.16.
    B. Bhushan: Adhesion and stiction: Mechanisms, measurement techniques and methods for reduction, J. Vac. Sci. Technol. B 21, 2262–2296 (2003)CrossRefGoogle Scholar
  17. 44.17.
    B. Bhushan: Nanotribology and Nanomechanics – An Introduction, 2nd edn. (Springer, Berlin, Heidelberg 2008)Google Scholar
  18. 44.18.
    B. Bhushan, J.N. Israelachvili, U. Landman: Nanotribology: Friction, wear and lubrication at the atomic scale, Nature 374, 607–616 (1995)CrossRefGoogle Scholar
  19. 44.19.
    B. Bhushan: Tribology and Mechanics of Magnetic Storage Systems, 2nd edn. (Springer, New York 1996)CrossRefGoogle Scholar
  20. 44.20.
    B. Bhushan: Tribology Issues and Opportunities in MEMS (Kluwer, Dordrecht 1998)CrossRefGoogle Scholar
  21. 44.21.
    B. Bhushan: Modern Tribology Handbook (CRC, Boca Raton 2001)Google Scholar
  22. 44.22.
    C. Neinhuis, W. Barthlott: Characterization and distribution of water-repellent, self-cleaning plant surfaces, Ann. Bot. 79, 667–677 (1997)CrossRefGoogle Scholar
  23. 44.23.
    W. Barthlott, C. Neinhuis: Purity of the sacred Lotus, or escape from contamination in biological surfaces, Planta 202, 1–8 (1997)CrossRefGoogle Scholar
  24. 44.24.
    P. Wagner, R. Fürstner, W. Barthlott, C. Neinhuis: Quantitative assessment to the structural basis of water repellency in natural and technical surfaces, J. Exp. Bot. 54, 1295–1303 (2003)CrossRefGoogle Scholar
  25. 44.25.
    Z. Burton, B. Bhushan: Surface characterization and adhesion and friction properties of hydrophobic leaf surfaces, Ultramicroscopy 106, 709–719 (2006)CrossRefGoogle Scholar
  26. 44.26.
    B. Bhushan, Y.C. Jung: Micro- and nanoscale characterization of hydrophobic and hydrophilic leaf surface, Nanotechnology 17, 2758–2772 (2006)CrossRefGoogle Scholar
  27. 44.27.
    B. Bhushan: Biomimetics: Lessons from nature – An overview, Philos. Trans. R. Soc. A 367, 1445–1486 (2009)CrossRefGoogle Scholar
  28. 44.28.
    K. Koch, B. Bhushan, W. Barthlott: Diversity of structure, morphology, and wetting of plant surfaces, Soft Matter 4, 1943–1963 (2008), (invited)CrossRefGoogle Scholar
  29. 44.29.
    K. Koch, B. Bhushan, W. Barthlott: Multifunctional surface structures of plants: An inspiration for biomimetics, Prog. Mater. Sci. 54, 137–178 (2009), (invited)CrossRefGoogle Scholar
  30. 44.30.
    K. Koch, B. Bhushan, Y.C. Jung, W. Barthlott: Fabrication of artificial Lotus leaves and significance of hierarchical structure for superhydrophobicity and low adhesion, Soft Matter 5, 1386–1393 (2009)CrossRefGoogle Scholar
  31. 44.31.
    X.F. Gao, L. Jiang: Biophysics: Water-repellent legs of water striders, Nature 432, 36 (2004)CrossRefGoogle Scholar
  32. 44.32.
    X. Gao, X. Yan, X. Yao, L. Xu, K. Zhang, J. Zhang, B. Yang, L. Jiang: The dry-style antifogging properties of mosquito compound eyes and artificial analogues prepared by soft lithography, Adv. Mater. 19, 2213–2217 (2007)CrossRefGoogle Scholar
  33. 44.33.
    M. Liu, S. Wang, Z. Wei, Y. Song, L. Jiang: Bioinspired design of a superoleophobic and low adhesive water/solid interface, Adv. Mater. 21, 665–669 (2009)CrossRefGoogle Scholar
  34. 44.34.
    D.W. Bechert, M. Bruse, W. Hage: Experiments with three-dimensional riblets as an idealized model of shark skin, Exp. Fluids 28, 403–412 (2000)CrossRefGoogle Scholar
  35. 44.35.
    J. Genzer, K. Efimenko: Recent developments in superhydrophobic surfaces and their relevance to marine fouling: A review, Biofouling 22, 339–360 (2006)CrossRefGoogle Scholar
  36. 44.36.
    R.N. Wenzel: Resistance of solid surfaces to wetting by water, Ind. Eng. Chem. 28, 988–994 (1936)CrossRefGoogle Scholar
  37. 44.37.
    A. Cassie, S. Baxter: Wettability of porous surfaces, Trans. Faraday Soc. 40, 546–551 (1944)CrossRefGoogle Scholar
  38. 44.38.
    R.E. Johnson, R.H. Dettre: Contact angle hysteresis. In: Contact Angle, Wettability, and Adhesion, Adv. Chem. Ser., Vol. 43, ed. by F.M. Fowkes (American Chemical Society, Washington 1964) pp. 112–135CrossRefGoogle Scholar
  39. 44.39.
    J. Bico, U. Thiele, D. Quéré: Wetting of textured surfaces, Colloids Surf. A 206, 41–46 (2002)CrossRefGoogle Scholar
  40. 44.40.
    A. Marmur: Wetting on hydrophobic rough surfaces: To be heterogeneous or not to be?, Langmuir 19, 8343–8348 (2003)CrossRefGoogle Scholar
  41. 44.41.
    A. Marmur: The Lotus effect: Superhydrophobicity and metastability, Langmuir 20, 3517–3519 (2004)CrossRefGoogle Scholar
  42. 44.42.
    A. Lafuma, D. Quéré: Superhydrophobic states, Nat. Mater. 2, 457–460 (2003)CrossRefGoogle Scholar
  43. 44.43.
    N.A. Patankar: Transition between superhydrophobic states on rough surfaces, Langmuir 20, 7097–7102 (2004)CrossRefGoogle Scholar
  44. 44.44.
    B. He, N.A. Patankar, J. Lee: Multiple equilibrium droplet shapes and design criterion for rough hydrophobic surfaces, Langmuir 19, 4999–5003 (2003)CrossRefGoogle Scholar
  45. 44.45.
    S. Herminghaus: Roughness-induced nonwetting, Europhys. Lett. 52, 165–170 (2000)CrossRefGoogle Scholar
  46. 44.46.
    N.A. Patankar: Mimicking the Lotus effect: Influence of double roughness structures and slender pillars, Langmuir 20, 8209–8213 (2004)CrossRefGoogle Scholar
  47. 44.47.
    M. Sun, C. Luo, L. Xu, H. Ji, Q. Ouyang, D. Yu, Y. Chen: Artificial Lotus leaf by nanocasting, Langmuir 21, 8978–8981 (2005)CrossRefGoogle Scholar
  48. 44.48.
    S. Shibuichi, T. Onda, N. Satoh, K. Tsujii: Super-water-repellent surfaces resulting from fractal structure, J. Phys. Chem. 100, 19512–19517 (1996)CrossRefGoogle Scholar
  49. 44.49.
    M. Nosonovsky, B. Bhushan: Roughness optimization for biomimetic superhydrophobic surfaces, Microsyst. Technol. 11, 535–549 (2005)CrossRefGoogle Scholar
  50. 44.50.
    M. Nosonovsky, B. Bhushan: Stochastic model for metastable wetting of roughness-induced superhydrophobic surfaces, Microsyst. Technol. 12, 231–237 (2006)CrossRefGoogle Scholar
  51. 44.51.
    M. Nosonovsky, B. Bhushan: Wetting of rough three-dimensional superhydrophobic surfaces, Microsyst. Technol. 12, 273–281 (2006)CrossRefGoogle Scholar
  52. 44.52.
    B. Bhushan, Y.C. Jung: Wetting study of patterned surfaces for superhydrophobicity, Ultramicroscopy 107, 1033–1041 (2007)CrossRefGoogle Scholar
  53. 44.53.
    B. Bhushan, M. Nosonovsky, Y.C. Jung: Towards optimization of patterned superhydrophobic surfaces, J. R. Soc. Interface 4, 643–648 (2007)CrossRefGoogle Scholar
  54. 44.54.
    B. Bhushan, K. Koch, Y.C. Jung: Nanostructures for superhydrophobicity and low adhesion, Soft Matter 4, 1799–1804 (2008)CrossRefGoogle Scholar
  55. 44.55.
    B. Bhushan, K. Koch, Y.C. Jung: Biomimetic hierarchical structure for self-cleaning, Appl. Phys. Lett. 93, 093101 (2008)CrossRefGoogle Scholar
  56. 44.56.
    B. Bhushan, K. Koch, Y.C. Jung: Fabrication and characterization of the hierarchical structure for superhydrophobicity, Ultramicroscopy 109, 1029–1034 (2009)CrossRefGoogle Scholar
  57. 44.57.
    B. Bhushan, Y.C. Jung, A. Niemietz, K. Koch: Lotus-like biomimetic hierarchical structures developed by the self-assembly of tubular plant waxes, Langmuir 25, 1659–1666 (2009)CrossRefGoogle Scholar
  58. 44.58.
    B. Bhushan, Y.C. Jung, K. Koch: Micro-, nano- and hierarchical structures for superhydrophobicity, self-cleaning and low adhesion, Philos. Trans. R. Soc. A 367, 1631–1672 (2009)CrossRefGoogle Scholar
  59. 44.59.
    Y.C. Jung, B. Bhushan: Wetting transition of water droplets on superhydrophobic patterned surfaces, Scr. Mater. 57, 1057–1060 (2007)CrossRefGoogle Scholar
  60. 44.60.
    Y.C. Jung, B. Bhushan: Wetting behavior during evaporation and condensation of water microdroplets on superhydrophobic patterned surfaces, J. Microsc. 229, 127–140 (2008)MathSciNetCrossRefGoogle Scholar
  61. 44.61.
    Y.C. Jung, B. Bhushan: Dynamic effects of bouncing water droplets on superhydrophobic surfaces, Langmuir 24, 6262–6269 (2008)CrossRefGoogle Scholar
  62. 44.62.
    Y.C. Jung, B. Bhushan: Dynamic effects induced transition of droplets on biomimetic superhydrophobic surfaces, Langmuir 25(16), 9208–9218 (2009)CrossRefGoogle Scholar
  63. 44.63.
    M. Nosonovsky, B. Bhushan: Hierarchical roughness makes superhydrophobic surfaces stable, Microelectron. Eng. 84, 382–386 (2007)CrossRefGoogle Scholar
  64. 44.64.
    M. Nosonovsky, B. Bhushan: Hierarchical roughness optimization for biomimetic superhydrophobic surfaces, Ultramicroscopy 107, 969–979 (2007)CrossRefGoogle Scholar
  65. 44.65.
    M. Nosonovsky, B. Bhushan: Patterned nonadhesive surfaces: Superhydrophobicity and wetting regime transitions, Langmuir 24, 1525–1533 (2008)CrossRefGoogle Scholar
  66. 44.66.
    M. Nosonovsky, B. Bhushan: Capillary effects and instabilities in nanocontacts, Ultramicroscopy 108, 1181–1185 (2008)CrossRefGoogle Scholar
  67. 44.67.
    M. Nosonovsky, B. Bhushan: Do hierarchical mechanisms of superhydrophobicity lead to self-organized criticality?, Scr. Mater. 59, 941–944 (2008)CrossRefGoogle Scholar
  68. 44.68.
    M. Nosonovsky, B. Bhushan: Energy transitions in superhydrophobicity: Low adhesion, easy flow and bouncing, J. Phys. Condens. Matter 20, 395005 (2008)CrossRefGoogle Scholar
  69. 44.69.
    C.W. Extrand: Criteria for ultralyophobic surfaces, Langmuir 20, 5013–5018 (2004)CrossRefGoogle Scholar
  70. 44.70.
    M. Nosonovsky, B. Bhushan: Biomimetic superhydrophobic surfaces: Multiscale approach, Nano Lett. 7, 2633–2637 (2007)CrossRefGoogle Scholar
  71. 44.71.
    J. Bico, C. Marzolin, D. Quéré: Pearl drops, Europhys. Lett. 47, 220–226 (1999)CrossRefGoogle Scholar
  72. 44.72.
    D. Oner, T.J. McCarthy: Ultrahydrophobic surfaces. Effects of topography length scales on wettability, Langmuir 16, 7777–7778 (2000)CrossRefGoogle Scholar
  73. 44.73.
    Z. Yoshimitsu, A. Nakajima, T. Watanabe, K. Hashimoto: Effects of surface structure on the hydrophobicity and sliding behavior of water droplets, Langmuir 18, 5818–5822 (2002)CrossRefGoogle Scholar
  74. 44.74.
    D. Richard, C. Clanet, D. Quéré: Contact time of a bouncing drop, Nature 417, 811 (2002)CrossRefGoogle Scholar
  75. 44.75.
    D. Bartolo, F. Bouamrirene, E. Verneuil, A. Buguin, P. Silberzan, S. Moulinet: Bouncing or sticky droplets: Impalement transitions on superhydrophobic micropatterned surfaces, Europhys. Lett. 74, 299–305 (2006)CrossRefGoogle Scholar
  76. 44.76.
    M. Reyssat, A. Pepin, F. Marty, Y. Chen, D. Quéré: Bouncing transitions on microtextured materials, Europhys. Lett. 74, 306–312 (2006)CrossRefGoogle Scholar
  77. 44.77.
    F.G. Yost, J.R. Michael, E.T. Eisenmann: Extensive wetting due to roughness, Acta Metall. Mater. 45, 299–305 (1995)Google Scholar
  78. 44.78.
    S. Semal, T.D. Blake, V. Geskin, M.L. de Ruijter, G. Castelein, J. De Coninck: Influence of surface roughness on wetting dynamics, Langmuir 15, 8765–8770 (1999)CrossRefGoogle Scholar
  79. 44.79.
    H.Y. Erbil, A.L. Demirel, Y. Avci: Transformation of a simple plastic into a superhydrophobic surface, Science 299, 1377–1380 (2003)CrossRefGoogle Scholar
  80. 44.80.
    Z. Burton, B. Bhushan: Hydrophobicity, adhesion, and friction properties of nanopatterned polymers and scale dependence for micro- and nanoelectromechanical systems, Nano Lett. 5, 1607–1613 (2005)CrossRefGoogle Scholar
  81. 44.81.
    Y.C. Jung, B. Bhushan: Contact angle, adhesion, and friction properties of micro- and nanopatterned polymers for superhydrophobicity, Nanotechnology 17, 4970–4980 (2006)CrossRefGoogle Scholar
  82. 44.82.
    C. Bourges-Monnier, M.E.R. Shanahan: Influence of evaporation on contact angle, Langmuir 11, 2820–2829 (1995)CrossRefGoogle Scholar
  83. 44.83.
    S.M. Rowan, M.I. Newton, G. McHale: Evaporation of microdroplets and the wetting of solid surfaces, J. Phys. Chem. 99, 13268–13271 (1995)CrossRefGoogle Scholar
  84. 44.84.
    H.Y. Erbil, G. McHale, M.I. Newton: Drop evaporation on solid surfaces: Constant contact angle mode, Langmuir 18, 2636–2641 (2002)CrossRefGoogle Scholar
  85. 44.85.
    G. McHale, S. Aqil, N.J. Shirtcliffe, M.I. Newton, H.Y. Erbil: Analysis of droplet evaporation on a superhydrophobic surface, Langmuir 21, 11053–11060 (2005)CrossRefGoogle Scholar
  86. 44.86.
    G.D. Danilatos, J.V. Brancik: Observation of liquid transport in the ESEM, Proc. 44th Annu. Meet. EMSA (1986) pp. 678–679Google Scholar
  87. 44.87.
    N.A. Stelmashenko, J.P. Craven, A.M. Donald, E.M. Terentjev, B.L. Thiel: Topographic contrast of partially wetting water droplets in environmental scanning electron microscopy, J. Microsc. 204, 172–183 (2001)MathSciNetCrossRefGoogle Scholar
  88. 44.88.
    P.G. de Gennes, F. Brochard-Wyart, D. Quéré: Capillarity and Wetting Phenomena (Springer, Berlin, Heidelberg 2003)Google Scholar
  89. 44.89.
    J.N. Israelachvili, M.L. Gee: Contact angles on chemically heterogeneous surfaces, Langmuir 5, 288–289 (1989)CrossRefGoogle Scholar
  90. 44.90.
    O.N. Tretinnikov: Wettability and microstructure of polymer surfaces: Stereochemical and conformational aspects. In: Apparent and Microscopic Contact Angles, ed. by J. Drelich, J.S. Laskowski, K.L. Mittal (VSP, Utrecht 2000) pp. 111–128Google Scholar
  91. 44.91.
    W. Li, A. Amirfazli: A thermodynamic approach for determining the contact angle hysteresis for superhydrophobic surfaces, J. Colloid Interface Sci. 292, 195–201 (2006)CrossRefGoogle Scholar
  92. 44.92.
    B.V. Derjaguin, N.V. Churaev: Structural component of disjoining pressure, J. Colloid Interface Sci. 49, 249–255 (1974)CrossRefGoogle Scholar
  93. 44.93.
    A. Checco, P. Guenoun, J. Daillant: Nonlinear dependence of the contact angle of nanodroplets on contact line curvatures, Phys. Rev. Lett. 91, 186101 (2003)CrossRefGoogle Scholar
  94. 44.94.
    M.A. Anisimov: Divergence of Tolmanʼs length for a droplet near the critical point, Phys. Rev. Lett. 98, 035702 (2007)CrossRefGoogle Scholar
  95. 44.95.
    T. Pompe, A. Fery, S. Herminghaus: Measurement of contact line tension by analysis of the three-phase boundary with nanometer resolution. In: Apparent and Microscopic Contact Angles, ed. by J. Drelich, J.S. Laskowski, K.L. Mittal (VSP, Utrecht 2000) pp. 3–12Google Scholar
  96. 44.96.
    L. Boruvka, A.W. Neumann: Generalization of the classical theory of capillarity, J. Chem. Phys. 66, 5464–5476 (1977)CrossRefGoogle Scholar
  97. 44.97.
    M. Nosonovsky: On the range of applicability of the Wenzel and Cassie equations, Langmuir 23, 9919–9920 (2007)CrossRefGoogle Scholar
  98. 44.98.
    L. Gao, T.J. McCarthy: How Wenzel and Cassie were wrong, Langmuir 23, 3762–3765 (2007)CrossRefGoogle Scholar
  99. 44.99.
    C.W. Extrand: Contact angle hysteresis on surfaces with chemically heterogeneous islands, Langmuir 19, 3793–3796 (2003)CrossRefGoogle Scholar
  100. 44.100.
    L. Barbieri, E. Wagner, P. Hoffmann: Water wetting transition parameters of perfluorinated substrates with periodically distributed flat-top microscale obstavles, Langmuir 23, 1723–1734 (2007)CrossRefGoogle Scholar
  101. 44.101.
    F.E. Bartell, J.W. Shepard: Surface roughness as related to hysteresis of contact angles, J. Phys. Chem. 57, 455–458 (1953)CrossRefGoogle Scholar
  102. 44.102.
    P. Gupta, A. Ulman, F. Fanfan, A. Korniakov, K. Loos: Mixed self-assembled monolayer of alkanethiolates on ultrasmooth gold do not exhibit contact angle hysteresis, J. Am. Chem. Soc. 127, 4–5 (2005)CrossRefGoogle Scholar
  103. 44.103.
    N. Eustathopoulos, M.G. Nicholas, B. Drevet: Wettability at High Temperatures (Pergamon, Amsterdam 1999)Google Scholar
  104. 44.104.
    M. Nosonovsky: Model for solid–liquid and solid–solid friction for rough surfaces with adhesion hysteresis, J. Chem. Phys. 126, 224701 (2007)CrossRefGoogle Scholar
  105. 44.105.
    Y.T. Cheng, D.E. Rodak, A. Angelopoulos, T. Gacek: Microscopic observations of condensation of water on lotus leaves, Appl. Phys. Lett. 87, 194112 (2005)CrossRefGoogle Scholar
  106. 44.106.
    A. Tuteja, W. Choi, M. Ma, J.M. Mabry, S.A. Mazzella, G.C. Rutledge, G.H. McKinley, R.E. Cohen: Designing superoleophobic surfaces, Science 318, 1618–1622 (2007)CrossRefGoogle Scholar
  107. 44.107.
    H. Kamusewitz, W. Possart, D. Paul: The relation between Youngʼs equilibrium contact angle and the hysteresis on rough paraffin wax surfaces, Colloids Surf. A 156, 271–279 (1999)CrossRefGoogle Scholar
  108. 44.108.
    T.N. Krupenkin, J.A. Taylor, T.M. Schneider, S. Yang: From rolling ball to complete wetting: The dynamic tuning of liquids on nanostructured surfaces, Langmuir 20, 3824–3827 (2004)CrossRefGoogle Scholar
  109. 44.109.
    V. Bahadur, S.V. Garimella: Electrowetting-based control of static droplet states on rough surfaces, Langmuir 23, 4918–4924 (2007)CrossRefGoogle Scholar
  110. 44.110.
    X.J. Feng, L. Feng, M.H. Jin, J. Zhai, L. Jiang, D.B. Zhu: Reversible super-hydrophobicity to super-hydrophilicity transition of aligned ZnO nanorod films, J. Am. Chem. Soc. 126, 62–63 (2004)CrossRefGoogle Scholar
  111. 44.111.
    E. Bormashenko, R. Pogreb, G. Whyman, M. Erlich: Cassie–Wenzel wetting transition in vibrated drops deposited on the rough surfaces: Is dynamic Cassie–Wenzel transition 2-D or 1-D affair?, Langmuir 23, 6501–6503 (2007)CrossRefGoogle Scholar
  112. 44.112.
    D. Quéré: Nonsticking drops, Rep. Prog. Phys. 68, 2495–2535 (2005)CrossRefGoogle Scholar
  113. 44.113.
    M. Nosonovsky: Multiscale roughness and stability of superhydrophobic biomimetic interfaces, Langmuir 23, 3157–3161 (2007)CrossRefGoogle Scholar
  114. 44.114.
    C. Ishino, K. Okumura: Nucleation scenarios for wetting transition on textured surfaces: The effect of contact angle hysteresis, Europhys. Lett. 76, 464–470 (2006)CrossRefGoogle Scholar
  115. 44.115.
    E. Bormashenko, Y. Bormashenko, T. Stein, G. Whyman, R. Pogreb, Z. Barkay: Environmental scanning electron microscope study of the fine structure of the triple line and Cassie–Wenzel wetting transition for sessile drops deposited on rough polymer substrates, Langmuir 23, 4378–4382 (2007)CrossRefGoogle Scholar
  116. 44.116.
    E.A. Baker: Chemistry and morphology of plant epicuticular waxes. In: The Plant Cuticle, ed. by D.F. Cutler, K.L. Alvin, C.E. Price (Academic, London 1982) pp. 139–165Google Scholar
  117. 44.117.
    R. Jetter, L. Kunst, A.L. Samuels: Composition of plant cuticular waxes. In: Biology of the Plant Cuticle, ed. by M. Riederer, C. Müller (Blackwell, Oxford 2006) pp. 145–181CrossRefGoogle Scholar
  118. 44.118.
    K. Koch, A. Dommisse, W. Barthlott: Chemistry and crystal growth of plant wax tubules of Lotus (Nelumbo nucifera) and Nasturtium (Tropaeolum majus) leaves on technical substrates, Cryst. Growth Des. 6, 2571–2578 (2006)CrossRefGoogle Scholar
  119. 44.119.
    C.Y. Poon, B. Bhushan: Comparison of surface roughness measurements by stylus profiler, AFM and noncontact optical profiler, Wear 190, 76–88 (1995)CrossRefGoogle Scholar
  120. 44.120.
    V.N. Koinkar, B. Bhushan: Effect of scan size and surface roughness on microscale friction measurements, J. Appl. Phys. 81, 2472–2479 (1997)CrossRefGoogle Scholar
  121. 44.121.
    N.S. Tambe, B. Bhushan: Scale dependence of micro-/nanofriction and adhesion of MEMS/NEMS materials, coatings and lubricants, Nanotechnology 15, 1561–1570 (2004)CrossRefGoogle Scholar
  122. 44.122.
    R. Fürstner, W. Barthlott, C. Neinhuis, P. Walzel: Wetting and self-cleaning properties of artificial superhydrophobic surfaces, Langmuir 21, 956–961 (2005)CrossRefGoogle Scholar
  123. 44.123.
    L. Gao, T.J. McCarthy: The Lotus effect explained: Two reasons why two length scales of topography are important, Langmuir 22, 2966–2967 (2006)CrossRefGoogle Scholar
  124. 44.124.
    L. Xu, W. Chen, A. Mulchandani, Y. Yan: Reversible conversion of conducting polymer films from superhydrophobic to superhydrophilic, Angew. Chem. Int. Ed. Engl. 44, 6009–6012 (2005)CrossRefGoogle Scholar
  125. 44.125.
    N.J. Shirtcliffe, G. McHale, M.I. Newton, C.C. Perry, P. Roach: Porous materials show superhydrophobic to superhydrophilic switching, Chem. Commun. 25, 3135–3137 (2005)CrossRefGoogle Scholar
  126. 44.126.
    S. Wang, H. Liu, D. Liu, X. Ma, X. Fang, L. Jiang: Enthalpy driven three state switching of a superhydrophilic/superhydrophobic surfaces, Angew. Chem. Int. Ed. Engl. 46, 3915–3917 (2007)CrossRefGoogle Scholar
  127. 44.127.
    T.N. Krupenkin, J.A. Taylor, E.N. Wang, P. Kolodner, M. Hodes, T.R. Salamon: Reversible wetting–dewetting transitions on delectrically tunable superhydrophobic nanostructured surfaces, Langmuir 23, 9128–9133 (2007)CrossRefGoogle Scholar
  128. 44.128.
    A. Nakajima, A. Fujishima, K. Hashimoto, T. Watanabe: Preparation of transparent superhydrophobic boehmite and silica films by sublimation of aluminum acetylacetonate, Adv. Mater. 11, 1365–1368 (1999)CrossRefGoogle Scholar
  129. 44.129.
    E. Martines, K. Seunarine, H. Morgan, N. Gadegaard, C.D.W. Wilkinson, M.O. Riehle: Superhydrophobicity and superhydrophilicity of regular nanopatterns, Nano Lett. 5, 2097–2103 (2005)CrossRefGoogle Scholar
  130. 44.130.
    B. Cappella, E. Bonaccurso: Solvent-assisted nanolithography on polystyrene surfaces using the atomic force microscope, Nanotechnology 18, 155307 (2007)CrossRefGoogle Scholar
  131. 44.131.
    C. Martín, G. Rius, X. Borrisé, F. Pérez-Murano: Nanolithography on thin layers of PMMA using atomic force microscopy, Nanotechnology 16, 1016–1022 (2005)CrossRefGoogle Scholar
  132. 44.132.
    M. Ma, R.M. Hill: Superhydrophobic surfaces, Curr. Opin. Colloid Interface Sci. 11, 193–202 (2006)CrossRefGoogle Scholar
  133. 44.133.
    H. Jansen, M. de Boer, R. Legtenberg, M. Elwenspoek: The black silicon method: A universal method for determining the parameter setting of a fluorine-based reactive ion etcher in deep silicon trench etching with profile control, J. Micromech. Microeng. 5, 115–120 (1995)CrossRefGoogle Scholar
  134. 44.134.
    S.R. Coulson, I. Woodward, J.P.S. Badyal, S.A. Brewer, C. Willis: Super-repellent composite fluoropolymer surfaces, J. Phys. Chem. B 104, 8836–8840 (2000)CrossRefGoogle Scholar
  135. 44.135.
    J. Shiu, C. Kuo, P. Chen, C. Mou: Fabrication of tunable superhydrophobic surfaces by nanosphere lithography, Chem. Mater. 16, 561–564 (2004)CrossRefGoogle Scholar
  136. 44.136.
    K. Teshima, H. Sugimura, Y. Inoue, O. Takai, A. Takano: Transparent ultra water-repellent poly(ethylene terephthalate) substrates fabricated by oxygen plasma treatment and subsequent hydrophobic coating, Appl. Surf. Sci. 244, 619–622 (2005)CrossRefGoogle Scholar
  137. 44.137.
    M.T. Khorasani, H. Mirzadeh, Z. Kermani: Wettability of porous polydimethylsiloxane surface: Morphology study, Appl. Surf. Sci. 242, 339–345 (2005)CrossRefGoogle Scholar
  138. 44.138.
    B. Qian, Z. Shen: Fabrication of superhydrophobic surfaces by dislocation-selective chemical etching on aluminum, copper, and zinc substrates, Langmuir 21, 9007–9009 (2005)CrossRefGoogle Scholar
  139. 44.139.
    J.L. Zhang, J.A. Li, Y.C. Han: Superhydrophobic PTFE surfaces by extension, Macromol. Rapid Commun. 25, 1105–1108 (2004)CrossRefGoogle Scholar
  140. 44.140.
    H. Yabu, M. Shimomura: Single-step fabrication of transparent superhydrophobic porous polymer films, Chem. Mater. 17, 5231–5234 (2005)CrossRefGoogle Scholar
  141. 44.141.
    M. Ma, R.M. Hill, J.L. Lowery, S.V. Fridrikh, G.C. Rutledge: Electrospun poly(styrene-block-dimethylsiloxane) block copolymer fibers exhibiting superhydrophobicity, Langmuir 21, 5549–5554 (2005)CrossRefGoogle Scholar
  142. 44.142.
    E. Bormashenko, T. Stein, G. Whyman, Y. Bormashenko, E. Pogreb: Wetting properties of the multiscaled nanostructured polymer and metallic superhydrophobic surfaces, Langmuir 22, 9982–9985 (2006)CrossRefGoogle Scholar
  143. 44.143.
    W. Lee, M. Jin, W. Yoo, J. Lee: Nanostructuring of a polymeric substrate with well-defined nanometer-scale topography and tailored surface wettability, Langmuir 20, 7665–7669 (2004)CrossRefGoogle Scholar
  144. 44.144.
    N. Chiou, C. Lu, J. Guan, L.J. Lee, A.J. Epstein: Growth and alignment of polyaniline nanofibres with superhydrophobic, superhydrophilic and other properties, Nat. Nanotechnol. 2, 354–357 (2007)CrossRefGoogle Scholar
  145. 44.145.
    N.J. Shirtcliffe, G. McHale, M.I. Newton, G. Chabrol, C.C. Perry: Dual-scale roughness produces unusually water-repellent surfaces, Adv. Mater. 16, 1929–1932 (2004)CrossRefGoogle Scholar
  146. 44.146.
    M. Hikita, K. Tanaka, T. Nakamura, T. Kajiyama, A. Takahara: Superliquid-repellent surfaces prepared by colloidal silica nanoparticles covered with fluoroalkyl groups, Langmuir 21, 7299–7302 (2005)CrossRefGoogle Scholar
  147. 44.147.
    H.M. Shang, Y. Wang, S.J. Limmer, T.P. Chou, K. Takahashi, G.Z. Cao: Optically transparent superhydrophobic silica-based films, Thin Solid Films 472, 37–43 (2005)CrossRefGoogle Scholar
  148. 44.148.
    Y. Zhao, M. Li, Q. Lu, Z. Shi: Superhydrophobic polyimide films with a hierarchical topography: Combined replica molding and layer-by-layer assembly, Langmuir 24, 12651–12657 (2008)CrossRefGoogle Scholar
  149. 44.149.
    L. Zhai, F.C. Cebeci, R.E. Cohen, M.F. Rubner: Stable superhydrophobic coatings from polyelectrolyte multilayers, Nano Lett. 4, 1349–1353 (2004)CrossRefGoogle Scholar
  150. 44.150.
    R.J. Klein, P.M. Biesheuvel, B.C. Yu, C.D. Meinhart, F.F. Lange: Producing super-hydrophobic surfaces with nano-silica spheres, Z. Metallkd. 94, 377–380 (2003)Google Scholar
  151. 44.151.
    W. Ming, D. Wu, R. van Benthem, G. de With: Superhydrophobic films from raspberry-like particles, Nano Lett. 5, 2298–2301 (2005)CrossRefGoogle Scholar
  152. 44.152.
    X. Zhang, S. Feng, X. Yu, H. Liu, Y. Fu, Z. Wang, L. Jiang, X. Li: Polyelectrolyte multilayer as matrix for electrochemical deposition of gold clusters: Toward superhydrophobic surface, J. Am. Chem. Soc. 126, 3064–3065 (2004)CrossRefGoogle Scholar
  153. 44.153.
    K.K.S. Lau, J. Bico, K.B.K. Teo, M. Chhowalla, G.A.J. Amaratunga, W.I. Milne, G.H. McKinley, K.K. Gleason: Superhydrophobic carbon nanotube forests, Nano Lett. 3, 1701–1705 (2003)CrossRefGoogle Scholar
  154. 44.154.
    L. Huang, S.P. Lau, H.Y. Yang, E.S.P. Leong, S.F. Yu: Stable superhydrophobic surface via carbon nanotubes coated with a ZnO thin film, J. Phys. Chem. 109, 7746–7748 (2005)CrossRefGoogle Scholar
  155. 44.155.
    M.E. Abdelsalam, P.N. Bartlett, T. Kelf, J. Baumberg: Wetting of regularly structured gold surfaces, Langmuir 21, 1753–1757 (2005)CrossRefGoogle Scholar
  156. 44.156.
    L. Zhu, Y. Xiu, J. Xu, P.A. Tamirisa, D.W. Hess, C. Wong: Superhydrophobicity on two-tier rough surfaces fabricated by controlled growth of aligned carbon nanotube arrays coated with fluorocarbon, Langmuir 21, 11208–11212 (2005)CrossRefGoogle Scholar
  157. 44.157.
    Y. Zhao, T. Tong, L. Delzeit, A. Kashani, M. Meyyappan, A. Majumdar: Interfacial energy and strength of multiwalled-carbon-nanotube-based dry adhesive, J. Vac. Sci. Technol. B 24, 331–335 (2006)CrossRefGoogle Scholar
  158. 44.158.
    N. Zhao, Q.D. Xie, L.H. Weng, S.Q. Wang, X.Y. Zhang, J. Xu: Superhydrophobic surface from vapor-induced phase separation of copolymer micellar solution, Macromolecules 38, 8996–8999 (2005)CrossRefGoogle Scholar
  159. 44.159.
    X. Wu, L. Zheng, D. Wu: Fabrication of superhydrophobic surfaces from microstructured ZnO-based surfaces via a wet-chemical route, Langmuir 21, 2665–2667 (2005)CrossRefGoogle Scholar
  160. 44.160.
    J.T. Han, Y. Jang, D.Y. Lee, J.H. Park, S.H. Song, D.Y. Ban, K. Cho: Fabrication of a bionic superhydrophobic metal surface by sulfur-induced morphological development, J. Mater. Chem. 15, 3089–3092 (2005)CrossRefGoogle Scholar
  161. 44.161.
    E. Hosono, S. Fujihara, I. Honma, H. Zhou: Superhydrophobic perpendicular nanopin film by the bottom-up process, J. Am. Chem. Soc. 127, 13458–13459 (2005)CrossRefGoogle Scholar
  162. 44.162.
    F. Shi, Y. Song, J. Niu, X. Xia, Z. Wang, X. Zhang: Facile method to fabricate a large-scale superhydrophobic surface by galvanic cell reaction, Chem. Mater. 18, 1365–1368 (2006)CrossRefGoogle Scholar
  163. 44.163.
    M.T. Northen, K.L. Turner: A batch fabricated biomimetic dry adhesive, Nanotechnology 16, 1159–1166 (2005)CrossRefGoogle Scholar
  164. 44.164.
    M.A.S. Chong, Y.B. Zheng, H. Gao, L.K. Tan: Combinational template-assisted fabrication of hierarchically ordered nanowire arrays on substrates for device applications, Appl. Phys. Lett. 89, 233104 (2006)CrossRefGoogle Scholar
  165. 44.165.
    Y. Wang, Q. Zhu, H. Zhang: Fabrication and magnetic properties of hierarchical porous hollow nickel microspheres, J. Mater. Chem. 16, 1212–1214 (2006)CrossRefGoogle Scholar
  166. 44.166.
    D. Kim, W. Hwang, H.C. Park, K.H. Lee: Superhydrophobic micro- and nanostructures based on polymer sticking, Key Eng. Mater. 334/335, 897–900 (2007)CrossRefGoogle Scholar
  167. 44.167.
    A. del Campo, C. Greiner: SU-8: A photoresist for high-aspect-ratio and 3-D submicron lithography, J. Micromech. Microeng. 17, R81–R95 (2007)CrossRefGoogle Scholar
  168. 44.168.
    B. Cortese, S.D. Amone, M. Manca, I. Viola, R. Cingolani, G. Gigli: Superhydrophobicity due to the hierarchical scale roughness of PDMS surfaces, Langmuir 24, 2712–2718 (2008)CrossRefGoogle Scholar
  169. 44.169.
    C.Y. Kuan, M.H. Hon, J.M. Chou, I.C. Leu: Wetting characteristics on micro-/nanostructured zinc oxide coatings, J. Electrochem. Soc. 156, J32–J36 (2009)CrossRefGoogle Scholar
  170. 44.170.
    Y.C. Jung, B. Bhushan: Technique to measure contact angle of micro/nanodroplets using atomic force microscopy, J. Vac. Sci. Technol. A 26, 777–782 (2008)CrossRefGoogle Scholar
  171. 44.171.
    M. Brugnara, C. Della Volpe, S. Siboni, D. Zeni: Contact angle analysis on polymethylmethacrylate and commercial wax by using an environmental scanning electron microscope, Scanning 28, 267–273 (2006)CrossRefGoogle Scholar
  172. 44.172.
    J.P. Cleveland, S. Manne, D. Bocek, P.K. Hansma: A nondestructive method for determining the spring constant of cantilevers for scanning force microscopy, Rev. Sci. Instrum. 64, 403–405 (1993)CrossRefGoogle Scholar
  173. 44.173.
    B. Bhushan, G.S. Blackman: Atomic force microscopy of magnetic rigid disks and sliders and its applications to tribology, ASME J. Tribol. 113, 452–457 (1991)CrossRefGoogle Scholar
  174. 44.174.
    N. Chen, B. Bhushan: Atomic force microscopy studies of conditioner thickness distribution and binding interactions on the hair surface, J. Microsc. 221, 203–215 (2006)MathSciNetCrossRefGoogle Scholar
  175. 44.175.
    R.A. Lodge, B. Bhushan: Surface characterization of human hair using tapping mode atomic force microscopy and measurement of conditioner thickness distribution, J. Vac. Sci. Technol. A 24, 1258–1269 (2006)CrossRefGoogle Scholar
  176. 44.176.
    S.E. Choi, P.J. Yoo, S.J. Baek, T.W. Kim, H.H. Lee: An ultraviolet-curable mold for sub-100 nm lithography, J. Am. Chem. Soc. 126, 7744–7745 (2004)CrossRefGoogle Scholar
  177. 44.177.
    B. Bhushan, D. Hansford, K.K. Lee: Surface modification of silicon and polydimethylsiloxane surfaces with vapor-phase-deposited ultrathin fluorosilane films for biomedical nanodevices, J. Vac. Sci. Technol. A 24, 1197–1202 (2006)CrossRefGoogle Scholar
  178. 44.178.
    T. Pompe, S. Herminghaus: Three-phase contact line energetics from nanoscale liquid surface topographies, Phys. Rev. Lett. 85, 1930–1933 (2000)CrossRefGoogle Scholar
  179. 44.179.
    D. Quéré: Surface wetting model droplets, Nat. Mater. 3, 79–80 (2004)CrossRefGoogle Scholar
  180. 44.180.
    T. Kasai, B. Bhushan, G. Kulik, L. Barbieri, P. Hoffmann: Micro-/nanotribological study of perfluorosilane SAMs for antistiction and low wear, J. Vac. Sci. Technol. B 23, 995–1003 (2005)CrossRefGoogle Scholar
  181. 44.181.
    X. Zhang, S. Tan, N. Zhao, X. Guo, X. Zhang, Y. Zhang, J. Xu: Evaporation of sessile water droplets on superhydrophobic natural lotus and biomimetic polymer surfaces, ChemPhysChem 7, 2067–2070 (2006)CrossRefGoogle Scholar
  182. 44.182.
    K. Koch, A. Dommisse, W. Barthlott, S. Gorb: The use of plant waxes as templates for micro- and nanopatterning of surfaces, Acta Biomater. 3, 905–909 (2007)CrossRefGoogle Scholar
  183. 44.183.
    K. Koch, A.J. Schulte, A. Fischer, S.N. Gorb, W. Barthlott: A fast and low-cost replication technique for nano- and high-aspect-ratio structures of biological and artificial materials, Bioinspir. Biomim. 3, 046002 (2008)CrossRefGoogle Scholar
  184. 44.184.
    R.F. Bunshah: Handbook of Deposition Technologies for Films and Coatings: Science, Technology and Applications (Applied Science, Westwood 1994)Google Scholar
  185. 44.185.
    A. Niemietz, W. Barthlott, K. Wandelt, K. Koch: Thermal evaporation of multi-component waxes and thermally activated formation of nano-tubules for superhydrophobic surfaces, Prog. Org. Coat. 66(3), 221–227 (2009)CrossRefGoogle Scholar
  186. 44.186.
    D.L. Dorset, W.A. Pangborn, A.J. Hancock: Epitaxial crystallization of alkane chain lipids for electron diffraction analysis, J. Biochem. Biophys. Methods 8, 29–40 (1983)CrossRefGoogle Scholar
  187. 44.187.
    K. Koch, W. Barthlott, S. Koch, A. Hommes, K. Wandelt, W. Mamdouh, S. De-Feyter, P. Broekmann: Structural analysis of wheat wax (Triticum aestivum, c.v. Naturastar L.): From the molecular level to three dimensional crystals, Planta 223, 258–270 (2006)CrossRefGoogle Scholar
  188. 44.188.
    A. Tuteja, W. Choi, G.H. McKinley, R.E. Cohen, M.F. Rubner: Design parameters for superhydrophobicity and superoleophobicity, Science 318, 1618 (2008)CrossRefGoogle Scholar
  189. 44.189.
    A.I.J.M. van Dijk, L.A. Bruijnzeel, C.J. Rosewell: Rainfall intensity–kinetic energy relationships: A critical literature appraisal, J. Hydrol. 261, 1–23 (2002)CrossRefGoogle Scholar
  190. 44.190.
    H. Lamb: Hydrodynamics (Cambridge Univ. Press, Cambridge 1932)MATHGoogle Scholar
  191. 44.191.
    X. Noblin, A. Buguin, F. Brochard-Wyart: Vibrated sessile drops: Transition between pinned and mobile contact line oscillations, Eur. Phys. J. E 14, 395–404 (2004)Google Scholar
  192. 44.192.
    F. Celestini, R. Kofman: Vibration of submillimeter-size supported droplets, Phys. Rev. E 73, 041602 (2006)CrossRefGoogle Scholar
  193. 44.193.
    R.J. Good: A thermodynamic derivation of Wenzelʼs modification of Youngʼs equation for contact angles. Together with a theory of hysteresis, J. Am. Chem. Soc. 74, 5041–5042 (1952)CrossRefGoogle Scholar
  194. 44.194.
    Y.L. Chen, C.A. Helm, J.N. Israelachvili: Molecular mechanisms associated with adhesion and contact angle hysteresis of monolayer surfaces, J. Phys. Chem. 95, 10736–10747 (1991)CrossRefGoogle Scholar
  195. 44.195.
    J.F. Joanny, P.G. de Gennes: A model for contact angle hysteresis, J. Chem. Phys. 81, 552–562 (1984)CrossRefGoogle Scholar
  196. 44.196.
    S.-W. Lee, P.E. Laibinis: Directed movement of liquids on patterned surfaces using noncovalent molecular adsorption, J. Am. Chem. Soc. 122, 5395–5396 (2000)CrossRefGoogle Scholar
  197. 44.197.
    Y.C. Jung, B. Bhushan: Wetting behavior of water and oil droplets in three-phase interfaces for hydrophobicity/hydrophilicity and oleophobicity/oleophilicity, Langmuir 25, 14165–14173 (2009)CrossRefGoogle Scholar
  198. 44.198.
    D.R. Lide: CRC Handbook of Chemistry and Physics, 89th edn. (CRC, Boca Raton 2009)Google Scholar
  199. 44.199.
    K. Tajima, T. Tsutsui, H. Murata: Thermodynamic relation of interfacial tensions in three fluid phases, Bull. Chem. Soc. Jpn. 53, 1165–1166 (1980)CrossRefGoogle Scholar
  200. 44.200.
    T. Nishino, M. Meguro, K. Nakamae, M. Matsushita, Y. Ueda: The lowest surface free energy based on –CF_3 alignment, Langmuir 15, 4321–4323 (1999)CrossRefGoogle Scholar
  201. 44.201.
    S. Wu: Surface-tension of solids-equation of state analysis, J. Colloid Interface Sci. 71, 605–609 (1979)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Nanoprobe Laboratory for Bio- and Nanotechnology and Biomimetics (NLB2)Ohio State UniversityColumbusUSA
  2. 2.Senior Engineer Process Development TeamSamsung Electronics C., Ltd.Gyeonggi-DoKorea
  3. 3.Department of Mechanical EngineeringUniversity of Wisconsin-MilwaukeeMilwaukeeUSA

Personalised recommendations