Skip to main content

Multifunctional Plant Surfaces and Smart Materials

  • Chapter
Springer Handbook of Nanotechnology

Part of the book series: Springer Handbooks ((SHB))

Abstract

The surfaces of plants represent multifunctional interfaces between the organisms and their biotic (living) and the nonbiotic solid, liquid, and gaseous environment. The diversity of plant surface structures has evolved over several hundred million years of evolution. Evolutionary processes have led to a large variety of functional plant surfaces which exhibit, for example, superhydrophobicity, self-cleaning, superhydrophilicity, and reduction of adhesion and light reflection. The primary surface of nearly all parts of land plants is the epidermis. The outer part of epidermal cells is an extracellular membrane called the cuticle. The cuticle, with its associated waxes, is a stabilization element, has a barrier function, and is responsible for various kinds of surface structuring by cuticular folding or deposition of three-dimensional wax crystals on the cuticle. Surface properties, such as superhydrophobicity, self-cleaning, reduction of adhesion and light reflection, and absorption of harmful ultraviolet (UV) radiation, are based on the existence of three-dimensional waxes. Waxes form different morphologies, such as tubules, platelets or rodlets, by self-assembly. The ability of plant waxes to self-assemble into three-dimensional nanostructures can be used to create hierarchical roughness of various kinds of surfaces. The structures and principles which nature uses to develop functional surfaces are of special interest in biomimetics. Hierarchical structures play a key role in surface wetting and are discussed in the context of superhydrophobic and self-cleaning plants and for the development of biomimetic surfaces. Superhydrophobic biomimetic surfaces are introduced and their use for self-cleaning or development of air-retaining surfaces, for, e.g., drag reduction at surfaces moving in water, are discussed. This chapter presents an overview of plant structures, combines the structural basis of plant surfaces with their functions, and introduces existing biomimetic superhydrophobic surfaces and their fabrication.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 309.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

2-D:

two-dimensional

3-D:

three-dimensional

AFM:

atomic force microscope

AFM:

atomic force microscopy

CA:

constant amplitude

CA:

contact angle

CAH:

contact angle hysteresis

ED:

electron diffraction

EDX:

energy-dispersive x-ray

HOPG:

highly oriented pyrolytic graphite

MEMS:

microelectromechanical system

NEMS:

nanoelectromechanical system

NMR:

nuclear magnetic resonance

NMR:

nuclear mass resonance

SEM:

scanning electron microscope

SEM:

scanning electron microscopy

STP:

standard temperature and pressure

TA:

tilt angle

UV:

ultraviolet

XRD:

x-ray powder diffraction

References

  1. K. Koch, B. Bhushan, W. Barthlott: Diversity of structure, morphology and wetting of plant surfaces, Soft Matter 4, 1799–1804 (2008)

    Article  Google Scholar 

  2. K. Koch, B. Bhushan, W. Barthlott: Multifunctional surface structures of plants: An inspiration for biomimetics, Prog. Mater. Sci. 54, 137–178 (2009)

    Article  Google Scholar 

  3. K. Koch, I.C. Blecher, G. König, S. Kehraus, W. Barthlott: The superhydrophilic and superoleophilic leaf surface of Ruellia devosiana (Acanthaceae): A biological model for spreading of water and oil on surfaces, Funct. Plant Biol. 36, 339–350 (2009)

    Article  Google Scholar 

  4. K. Koch, B. Bhushan, Y.C. Jung, W. Barthlott: Fabrication of artificial Lotus leaves and significance of hierarchical structure for superhydrophobicity and low adhesion, Soft Matter 5, 1386–1393 (2009)

    Article  Google Scholar 

  5. M. Riederer, L. Schreiber: Protecting against water loss: analysis of the barrier properties of plant cuticles, J. Exp. Bot. 52, 2023–2032 (2001)

    Article  Google Scholar 

  6. W. Barthlott, C. Neinhuis: The purity of sacred lotus or escape from contamination in biological surfaces, Planta 202, 1–8 (1997)

    Article  Google Scholar 

  7. H. Bargel, K. Koch, Z. Cerman, C. Neinhuis: Structure-function relationships of the plant cuticle and cuticular waxes – A smart material?, Funct. Plant. Biol. Evans Rev. Ser. 3, 893–910 (2006)

    Article  Google Scholar 

  8. P. Kenrick, P.R. Crane: The origin and early evolution of plants on land, Nature 389, 33–39 (1997)

    Article  Google Scholar 

  9. P.J. Holloway: Section I – Reviews. Plant cuticles: Physiochemical characteristics and biosynthesis. In: Air Pollutants and the Leaf Cuticle, ed. by K.E. Percy, J.N. Cape, R. Jagels, C.J. Simpson (Springer, Berlin Heidelberg 1994)

    Google Scholar 

  10. P.E. Kolattukudy: Polyesters in higher plants, Adv. Biochem. Eng. Biotechnol. 71, 4–49 (2001)

    Google Scholar 

  11. C.E. Jeffree: The fine structure of the plant cuticle. In: Biology of the Plant Cuticle, ed. by M. Riederer, C. Müller (Blackwell, Oxford 2006) pp. 11–125

    Chapter  Google Scholar 

  12. J.T. Martin, B.E. Juniper: The Cuticles of Plants (Edward Arnold, London 1970)

    Google Scholar 

  13. D.F. Cutler, K.L. Alvin, C.E. Price (Eds.): The Plant Cuticle (Academic Press, London 1982)

    Google Scholar 

  14. G. Kerstiens: Plant cuticles: an integrated functional approach (BIOS Scientific Publishers, Oxford 1996)

    Google Scholar 

  15. M. Riederer, C. Müller: Biology of the Plant Cuticle (Blackwell, Oxford 2006)

    Book  Google Scholar 

  16. M. Riederer, L. Schreiber: Waxes – The transport barriers of plant cuticles. In: Waxes: Chemistry, Molecular Biology and Functions, ed. by R.J. Hamilton (The Oily Press, Dundee 1995) pp. 131–156

    Google Scholar 

  17. C. Neinhuis, W. Barthlott: Characterization and distribution of water-repellent, self-cleaning plant surfaces, Ann. Bot. 79, 667–677 (1997)

    Article  Google Scholar 

  18. R. Fürstner, W. Barthlott, C. Neinhuis, P. Walzel: Wetting and self-cleaning properties of artificial superhydrophobic surfaces, Langmuir 21, 956–961 (2005)

    Article  Google Scholar 

  19. L.Q. Ren, S.J. Wang, X.M. Tian, Z.W. Han, L.N. YanQiu, Z.M. Qiu: Non-smooth morphologies of typical plant leaf surfaces and their anti-adhesion effects, J. Bionic Eng. 4, 33–40 (2007)

    Article  Google Scholar 

  20. H. Bargel, C. Neinhuis: Tomato (Lycopersicon esculentum Mill.) fruit growth and ripening as related to the biomechanical properties of fruit skin and isolated cuticle, J. Exp. Bot. 56, 1049–1060 (2005)

    Article  Google Scholar 

  21. H.G. Edelmann, C. Neinhuis, H. Bargel: Influence of hydration and temperature on the rheological properties of plant cuticles and their impact on plant organ integrity, J. Plant Growth Regul. 24, 116–126 (2005)

    Article  Google Scholar 

  22. M. Riederer, K. Markstädter: Cuticular waxes: A critical assessment of current knowledge. In: Plant Cuticles – An Integrated Functional Approach (BIOS Scientific, Oxford 1996) pp. 189–198

    Google Scholar 

  23. L. Kunst, A.L. Samuels: Biosynthesis and secretion of plant cuticular wax, Prog. Lipid Res. 42, 51–80 (2003)

    Article  Google Scholar 

  24. R. Jetter, S. Schäffer: Chemical composition of the Prunus laurocerasus leaf surface. Dynamic changes of the epicuticular wax film during leaf development, Plant Phys. 126, 1725–1737 (2001)

    Article  Google Scholar 

  25. R. Jetter, L. Kunst, A.L. Samuels: Composition of plant cuticular waxes, Annu. Plant Rev. 23, 145–175 (2006)

    Google Scholar 

  26. E.A. Baker: Chemistry and morphology of plant epicuticular waxes. In: The Plant Cuticle, ed. by D.F. Cutler, K.L. Alvin, C.E. Price (Academic, London 1982) pp. 139–165

    Google Scholar 

  27. T. Shepherd, D.W. Griffiths: The effects of stress on plant cuticular waxes, New Phytol. 171, 469–499 (2006)

    Article  Google Scholar 

  28. K. Koch, K.D. Hartmann, L. Schreiber, W. Barthlott, C. Neinhuis: Influence of air humidity on epicuticular wax chemical composition, morphology and wettability of leaf surfaces. Env. Exp. Bot. 56, 1–9 (2006)

    Article  Google Scholar 

  29. C. Markstädter, W. Federle, R. Jetter, M. Riederer, B. Hölldobler: Chemical composition of the slippery epicuticular wax blooms on Macaranga (Euphorbiaceae) ant-plants, Chemoecology 10, 33–40 (2000)

    Article  Google Scholar 

  30. M. Riedel, A. Eichner, R. Jetter: Slippery surfaces of carnivorous plants: Composition of epicuticular wax crystals in Nepenthes alata Blanco pitchers, Planta 218, 87–97 (2003)

    Article  Google Scholar 

  31. M. Wen, C. Buschhaus, R. Jetter: Nanotubules on plant surfaces: Chemical composition of epicuticular wax crystals on needles of Taxus baccata L, Phytochemistry 67, 1808–1817 (2007)

    Article  Google Scholar 

  32. H. Ensikat, C. Neinhuis, W. Barthlott: Direct access to plant epicuticular wax crystals by a new mechanical isolation method, Int. J. Plant Sci. 161, 143–148 (2000)

    Article  Google Scholar 

  33. H.J. Ensikat, M. Boese, W. Mader, W. Barthlott, K. Koch: Crystallinity of plant epicuticular waxes: Electron and X-ray diffraction studies, Chem. Phys. Lipids 144, 45–59 (2006)

    Article  Google Scholar 

  34. W. Barthlott, C. Neinhuis, D. Cutler, F. Ditsch, I. Meusel, I. Theisen, H. Wilhelmi: Classification and terminology of plant epicuticular waxes, Bot. J. Linn. Soc. 126, 237–260 (1998)

    Article  Google Scholar 

  35. N.D. Hallam, B.E. Juniper: The anatomy of the leaf surface. In: The Ecology of Leaf Surface Micro-organisms, ed. by T.F. Preece, C.H. Dickinson (Academic, London 1971) pp. 3–37

    Google Scholar 

  36. C.E. Jeffree, E.A. Baker, P.J. Holloway: Ultrastructure and recrystallization of plant epicuticular waxes, New Physiol. 75, 539–549 (1975)

    Article  Google Scholar 

  37. K. Koch, C. Neinhuis, H.J. Ensikat, W. Barthlott: Self assembly of epicuticular waxes on plant surfaces investigated by atomic force microscopy (AFM), J. Exp. Bot. 55, 711–718 (2004)

    Article  Google Scholar 

  38. K. Koch, H.J. Ensikat: The hydrophobic coatings of plant surfaces: epicuticular wax crystals and their morphologies, crystallinity and molecular self-assembly, Micron 39, 759–772 (2008)

    Article  Google Scholar 

  39. P.J. Holloway, C.E. Jeffree, E.A. Baker: Structural determination of secondary alcohols from plant epicuticular waxes, Phytochemistry 15, 1768–1770 (1976)

    Article  Google Scholar 

  40. R. Jetter, M. Riederer: In vitro reconstitution of epicuticular wax crystals: Formation of tubular aggregates by long chain secondary alkendiols, Bot. Acta 108, 111–120 (1995)

    Google Scholar 

  41. W. Barthlott, I. Theisen, T. Borsch, C. Neinhuis: Epicuticular waxes and vascular plant systematics: Integrating micromorphological and chemical data. In: Deep Morphology: Toward a Renaissance of Morphology in Plant Systematics, Regnum Vegetabile, Vol. 141, ed. by T.F. Stuessy, V. Mayer, E. Hörandl (Gantner Verlag Ruggell/Liechtenstein 2003) pp. 189–206

    Google Scholar 

  42. I. Meusel, C. Neinhuis, C. Markstädter, W. Barthlott: Chemical composition and recrystallization of epicuticular waxes: coiled rodlets and tubules, Plant Biol. 2, 1–9 (2000)

    Article  Google Scholar 

  43. I. Meusel, C. Neinhuis, C. Markstädter, W. Barthlott: Ultrastructure, chemical composition and recrystallisation of epicuticular waxes: transversely ridged rodlets, Can. J. Bot. 77, 706–720 (1999)

    Google Scholar 

  44. International Union of Crystallography: Report of the executive committee for 1991, Acta Crystalogr. A 48, 922–946 (1992)

    Article  Google Scholar 

  45. R. Jetter, M. Riederer: Epicuticular crystals of nonacosan-10-ol: In-vitro reconstitution and factors influencing crystal habits, Planta 195, 257–270 (1994)

    Article  Google Scholar 

  46. K. Koch, W. Barthlott, S. Koch, A. Hommes, K. Wandelt, W. Mamdouh, S. De-Feyter, P. Broekmann: Structural analysis of wheat wax (Triticum aestivum): From the molecular level to three dimensional crystals, Planta 223, 258–270 (2006)

    Article  Google Scholar 

  47. K. Koch, A. Dommisse, W. Barthlott: Chemistry and crystal growth of plant wax tubules of Lotus (Nelumbo nucifera) and Nasturtium (Tropaeolum majus) leaves on technical substrates, Cryst. Growth Des. 6, 2571–2578 (2006)

    Article  Google Scholar 

  48. J.M. Benyus: Biomimicry: Innovation Inspired by Nature, 2nd edn. (H. Collins Pub., New York 2002)

    Google Scholar 

  49. G.M. Whitesides, M. Boncheva: Beyond molecules: Self-assembly of mesoscopic and macroscopic components, Proc. Natl. Acad. Sci. USA 99(8), 4769–4774 (2002)

    Article  Google Scholar 

  50. J. Zhang, W. Zhong-Lin, J. Liu, C. Shaowei, G. Liu: Self Assembled Nanostructures (Kluwer Academic, New York 2003)

    Google Scholar 

  51. N. Boden, P.J.B. Edwards, K.W. Jolley: Self-assembly and self-organization in micellar liquid crystals. In: Structure and Dynamics of Strongly Interacting Colloids and Supermolecular Aggregates in Solutions, ed. by S.H. Chen, J.S. Huang, P. Tartaglia (Kluwer, Dordrecht 1992)

    Google Scholar 

  52. C. Neinhuis, K. Koch, W. Barthlott: Movement and regeneration of epicuticular waxes through plant cuticles, Planta 213, 427–434 (2001)

    Article  Google Scholar 

  53. D. Dorset: Development of lamellar structures in natural waxes – An electron diffraction investigation, J. Phys. D 32, 1276–1280 (1999)

    Article  Google Scholar 

  54. B. Bhushan, K. Koch, Y.C. Jung: Biomimetic hierarchical structure for self-cleaning, Appl. Phys. Lett. 93, 093101 (2008)

    Article  Google Scholar 

  55. B. Bhushan, K. Koch, Y.C. Jung: Nanostructures for superhydrophobicity and low adhesion, Soft Matter 4, 1799–1804 (2008)

    Article  Google Scholar 

  56. S. De Feyter, F.C. De Schryver: Self-assembly at the liquid/solid interface: STM reveals, J. Phys. Chem. B 109, 4290–4302 (2005)

    Article  Google Scholar 

  57. F.C. Meldrum, S. Ludwigs: Template-directed control of crystal morphologies, Macromol. Biosci. 7, 152–162 (2007)

    Article  Google Scholar 

  58. A. Dommisse: Self-assembly and pattern formation of epicuticular waxes on plant surfaces. Ph.D. Thesis (Rheinische Friedrich-Wilhelms Universität, Bonn 2007)

    Google Scholar 

  59. W. Barthlott, N. Ehler: Rasterelektronenmikroskopie der Epidermis-Oberflächen von Spermatophyten, Tropische und subtropische Pflanzenwelt (Akademie der Wissenschaften und Literatur/Franz Steiner, Mainz/Wiesbaden 1977), in German

    Google Scholar 

  60. W. Barthlott: Scanning electron microscopy of the epidermal surface in plants. In: Scanning Electron Microscopy in Taxonomy and Functional Morphology, ed. by D. Claugher (Clarendon Press, Oxford 1990) pp. 69–94

    Google Scholar 

  61. C. Martin, B.J. Glover: Functional aspects of cell patterning in aerial epidermis, Curr. Opin. Plant Biol. 10, 70–82 (2007)

    Article  Google Scholar 

  62. C.A. Brewer, W.K. Smith, T.C. Vogelmann: Functional interaction between leaf trichomes, leaf wettability and the optical properties of water droplets, Plant Cell Environ. 14, 955–962 (1991)

    Article  Google Scholar 

  63. G.J. Wagner, E. Wang, R.W. Shephers: New approaches for studying and exploiting an old protuberance, the plant trichome, Ann. Bot. 93, 3–11 (2004)

    Article  Google Scholar 

  64. E. Rodriguez, P.L. Healey, I. Mehta: Biology and Chemistry of Plant Trichomes (Plenum, New York 1984)

    Google Scholar 

  65. H.D. Behnke: Plant trichomes – structure and ultrastructure: General terminology, taxonomic applications, and aspects of trichome bacterial interaction in leaf tips of Dioscorea. In: Biology and chemistry of plant trichomes, ed. by E. Rodriguez, P.L. Healey, I. Mehta (Plenum Press, New York 1984) pp. 1–21

    Google Scholar 

  66. W. Barthlott, D. Hunt: Seed-diversity in Cactaceae subfam. Cactoideae. In: Succulent Plant Research, Vol. 5, ed. by D. Hundt (Milborne Port, England 2000)

    Google Scholar 

  67. P.G. Kevan, M.A. Lanet: Flower petal microtexture is a tactile cue for bees, Proc. Natl. Acad. Sci. USA 82, 4750–4752 (1985)

    Article  Google Scholar 

  68. R. Maheshwari: A scourge of mankind: From ancient times into the genomics era, Curr. Sci. 93, 1249–1256 (2007)

    Google Scholar 

  69. H.C. Hoch, R.C. Staples, B. Whitehead, J. Comeau, E.D. Wolf: Signaling for growth orientation and cell differentiation by surface topography, Uromyces Sci. 239, 1659–1663 (1987)

    Article  Google Scholar 

  70. L.H.P. Jones, K.A. Handreck: Silica in soils, plants, and animals, Adv. Agron. 19, 107–149 (1967)

    Article  Google Scholar 

  71. A.G. Sangster, M.J. Hodson, H.J. Tubb: Silicon deposition in higher plants. In: Silicon in Agriculture, ed. by L.E. Datnoff, G.H. Snyder, G.H. Korndörfer (Elsevier, Amsterdam 2001) pp. 85–114

    Chapter  Google Scholar 

  72. F. Fauteux, W. Remus-Borel, J.G. Menziesb, R.R. Belanger: Silicon and plant disease resistance against pathogenic fungi, FEMS Microbiol. Lett. 249, 1–6 (2005)

    Article  Google Scholar 

  73. R.K. Saeedur: Calcium Oxalate in Biological Systems (CRC, Boca Raton 1995) p. 375

    Google Scholar 

  74. V.R. Franceschi, P.A. Nakata: Calcium oxalate in plants: Formation and function, Annu. Rev. Plant Biol. 56, 41–71 (2005)

    Article  Google Scholar 

  75. A. Fahn: Structure and function of secretory cells, Adv. Bot. Res. 31, 37–75 (2000)

    Article  Google Scholar 

  76. E. Wollenweber: The distribution and chemical constituents of the farinose exudates in gymnogrammoid ferns, Am. Fern. J. 68, 13–28 (1978)

    Article  Google Scholar 

  77. W. Barthlott, E. Wollenweber: Zur Feinstruktur, Chemie und Taxonomischen Signifikanz Epicuticularer Wachse und ähnlicher Sekrete, Trop. Subtrop. Pflanzenwelt 32, 7–67 (1981), in German

    Google Scholar 

  78. A. Solga, Z. Cerman, B.F. Striffler, M. Spaeth, W. Barthlott: The dream of staying clean: Lotus and biomimetic surfaces, Bioinspir. Biomimetics 2, 1–9 (2007)

    Article  Google Scholar 

  79. Z. Cerman, B.F. Striffler, W. Barthlott: Dry in the water: The superhydrophobic water fern Salvinia – A model for biomimetic surfaces. In: Functional Surfaces in Biology: Little Structures with Big Effects, Vol. I, ed. by S.N. Gorb (Springer, Berlin Heidelberg 2009)

    Google Scholar 

  80. W. Barthlott, S. Wiersch, Z. Colic, K. Koch: Classification of trichome types within the water ferns Salvinia and ontogeny of the eggbeater trichomes, Botany 87, 830–836 (2009)

    Article  Google Scholar 

  81. H.G. Jones, E. Rotenberg: Energy, radiation and temperature regulation in plants. In: Encyclopedia of Life Sciences (Wiley, New York 2001) pp. 1–8 (2001)

    Google Scholar 

  82. D.M. Gates: Transpiration and leaf temperature, Ann. Rev. Plant Phys. 19, 211–238 (1968)

    Article  Google Scholar 

  83. D.M. Gates: Energy exchange and transpiration. In: Water and Plant Life, Ecological Studies, Vol. 19, ed. by O.L. Lange, L. Kappen, E.D. Schulze (Springer, New York 1976) pp. 137–147

    Chapter  Google Scholar 

  84. P.H. Schuepp: Model experiments on free convection heat and mass transfer of leaves and plant elements, Bound.-Layer Meteorol. 3, 454–457 (1973)

    Article  Google Scholar 

  85. P.H. Schuepp: Leaf boundary layers, New Phytol. 125, 477–507 (1993)

    Article  Google Scholar 

  86. P.S. Nobel: Physicochemical and Environmental Plant Physiology (Academic, San Diego 1991)

    Google Scholar 

  87. M. Riederer: The cuticles of conifers: Structure, composition and transport properties. In: Forest Decline and Air Pollution: A study of spruce (Picea abies) on acid soil, Ecological Studies, Vol. 77, ed. by E.D. Schulze, O.L. Lange, R. Oren (Springer, Berlin Heidelberg 1989), pp. 157–192

    Google Scholar 

  88. R.H. Grant, G.M. Heisler, W. Gao, M. Jenks: Ultraviolet leaf reflectance of common urban trees and the prediction of reflectance from leaf surface characteristics, Agric. For. Meteorol. 120, 127–139 (2003)

    Article  Google Scholar 

  89. J.D. Barnes, J. Cardoso-Vilhena: Interactions between electromagnetic radiation and the plant cuticle. In: Plant Cuticles, an integrated approach, ed. by G. Kerstiens (BIOS Scientific, Oxford 1996) pp. 157–170

    Google Scholar 

  90. M.G. Holmes, D.R. Keiller: Effects of pubescence and waxes on the reflectance of leaves in the ultraviolet and photosynthetic wavebands: A comparison of a range of species, Plant Cell Env. 25, 85–93 (2002)

    Article  Google Scholar 

  91. E.E. Pfündel, G. Agati, Z.G. Cerovic: Optical properties of plant surfaces, Annu. Plant Rev. 3, 216–239 (2006)

    Google Scholar 

  92. S. Robinson, C.E. Lovelock, C.B. Osmond: Wax as a mechanism for protection against photoinhibition: A study of Cotyledon orbiculata, Bot. Acta 106, 307–312 (1993)

    Google Scholar 

  93. C. Müller, M. Riederer: Plant surface properties in chemical ecology, Chem. Ecol. 3, 2621–2651 (2005)

    Google Scholar 

  94. R. Sinclair, D.A. Thomas: Optical properties of leaves of some species in arid South Australia, Austral. Bot. 18, 261–273 (1970)

    Article  Google Scholar 

  95. P. Krauss, C. Markstädter, M. Riederer: Attenuation of UV radiation by plant cuticles from woody species, Plant Cell Env. 20, 1079–1085 (1997)

    Article  Google Scholar 

  96. A.E. Stapleton, V. Walbot: Flavonoids can protect maize DNA from the induction of ultraviolet radiation damage, Plant Physiol. 105, 881–889 (1994)

    Article  Google Scholar 

  97. L.C. Olsson, M. Veit, J.F. Bornman: Epidermal transmittance and phenolics composition of atrazine-tolerant and atrazine-sensitive cultivars of Brassica napus grown under enhanced UV-B radiation, Phys. Plant 107, 259–266 (1999)

    Article  Google Scholar 

  98. E. Wollenweber, U.H. Dietz: Occurrence and distribution of free flavonoid aglycones in plants, Phytochemistry 20, 869–932 (1981)

    Article  Google Scholar 

  99. J.F. Jacobs, G.J.M. Koper, W.N.J. Ursem: UV protective coatings: A botanical approach, Prog. Org. Coat. 58, 166–171 (2007)

    Article  Google Scholar 

  100. J.R. Ehleringer, O. Björkman: Pubescence and leaf spectral characteristics in a desert shrub Encelia farinosa, Oecologia 36, 151–162 (1978)

    Article  Google Scholar 

  101. P.S. Nobel: Biophysical Plant Physiology and Ecology (Freeman, San Francisco 1983)

    Google Scholar 

  102. S.D. Eigenbrode: Plant surface waxes and insect behaviour. In: Plant Cuticles: An Integrated Functional Approach, ed. by G. Kerstiens (BIOS Scientific Publishers, Oxford 1996) pp. 201–222

    Google Scholar 

  103. R.G. Beutel, S.N. Gorb: Ultrastructure of attachment specializations of hexapods (Arthropoda): Evolutionary patterns inferred from a revised ordinal phylogeny, J. Zool. Syst. Evol. Res. 39, 177–207 (2001)

    Article  Google Scholar 

  104. S. Gorb: Attachment Devises of Insect Cuticles (Kluwer, Dortrecht 2001)

    Google Scholar 

  105. W. Federle, U. Maschwitz, B. Fiala, M. Riederer, B. Hölldobler: Slippery ant-plants and skilful climbers: Selection and protection of specific ant partners by epicuticular wax blooms in Macaranga (Euphorbiaceae), Oeco 112, 217–224 (1997)

    Article  Google Scholar 

  106. S. Poppinga: Pflanzen fangen Tiere: Mikroskopische Charakteristika von Gleitfallen. Diploma Thesis (Nees Institut for Biodiversity of Plants, Universtität Bonn 2007), in German

    Google Scholar 

  107. B.E. Juniper, R.J. Robins, D.M. Joel: The Carnivorous Plants (Academic, London 1989)

    Google Scholar 

  108. E. Gorb, K. Haas, A. Henrich, S. Enders, N. Barbakadze, S. Gorb: Composite structure of the crystalline epicuticular wax layer of the slippery zone in the pitchers of the carnivorous plant Nepenthes alata and its effect on the insect attachment, J. Exp. Biol. 208, 4651–4662 (2005)

    Article  Google Scholar 

  109. H. Bohn, W. Federle: Insect aquaplaning: Nepenthes pitcher plants capture prey with the peristome, a fully wettable water-lubricated anisotropic surface, Proc. Natl. Acad. Sci. USA 39, 14138–14143 (2004)

    Article  Google Scholar 

  110. U. Bauer, H.F. Bohn, W. Federle: Harmless nectar source or deadly trap: Nepenthes pitchers are activated by rain, condensation and nectar, Proc. R. Soc. B 275, 259–265 (2008)

    Article  Google Scholar 

  111. H.C. Flemming: Auswirkungen mikrobieller Materialzerstörung. In: Mikrobielle Materialzerstörung, ed. by H. Brill (Georg Fischer, Stuttgart 1995) pp. 15–23, in German

    Google Scholar 

  112. J.N. Israelachvili: Intermolecular and Surface Forces, 2nd edn. (Academic Press, London 1992)

    Google Scholar 

  113. B. Bhushan: Introduction to Tribology (Wiley, New York 2002)

    Google Scholar 

  114. P.G. De Gennes, F. Brochard-Wyart, D. Quere: Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves (Springer, New York 2004)

    Book  MATH  Google Scholar 

  115. B. Bhushan (Ed.): Nanotribology and Nanomechanics – An Introduction, 2nd edn. (Springer, Heidelberg 2008)

    Google Scholar 

  116. A.V. Adamson: Physical Chemistry of Surfaces (Wiley, New York 1990)

    Google Scholar 

  117. R.N. Wenzel: Resistance of solid surfaces to wetting by water, Ind. Eng. Chem. 28, 988 (1936)

    Article  Google Scholar 

  118. A.B.D. Cassie, S. Baxter: Wettability of porous surfaces, Trans Faraday Soc. 40, 546 (1944)

    Article  Google Scholar 

  119. M. Reyssat, J.M. Yeomans, D. Quere: Impalement of fakir drops, Europhys Lett. 81, 26006 (2008)

    Article  Google Scholar 

  120. Y.C. Jung, B. Bhushan: Wetting behavior during evaporation and condensation of water microdroplets on superhydrophobic patterned surfaces, J. Microsc. 229, 127–140 (2008)

    Article  MathSciNet  Google Scholar 

  121. C.W. Extrand: Model for contact angle and hysteresis on rough and ultraphobic surfaces, Langmuir 18, 7991–7999 (2002)

    Article  Google Scholar 

  122. B. Bhushan, Y.C. Jung: Wetting study of patterned surfaces for superhydrophobicity, Ultramicroscopy 107, 1033–1041 (2007)

    Article  Google Scholar 

  123. P. Roach, N.J. Shirtcliffe, M.I. Newton: Progress in superhydrophobic surface development, Soft Matter 4, 224–240 (2008)

    Article  Google Scholar 

  124. X. Zhang, F. Shi, J. Niu, Y. Jiang, Z. Wang: Superhydrophobic surfaces: from structural control to functional application, J. Mater. Chem. 18, 621–633 (2008)

    Article  Google Scholar 

  125. J. Heintzenberg: Fine particles in the global troposphere – A review, Tellus B 41, 149–160 (1989)

    Article  Google Scholar 

  126. J. Burkhardt, H. Kaiser, H. Goldbach, L. Kappen: Measurements of electrical leaf surface conductance reveal re-condensation of transpired water vapour on leaf surfaces, Plant Cell Environ. 22, 189–196 (1999)

    Article  Google Scholar 

  127. J. Burkhardt, K. Koch, H. Kaiser: Deliquescence of deposited atmospheric particles on leaf surfaces, Water Air Soil Pollut. 1, 313–321 (2001)

    Google Scholar 

  128. W. Barthlott, W. Schultze-Motel: Zur Feinstruktur der Blattoberflächen und Systematischen Stellung der Laubmoosgattung Rhacocarpus und anderer Hedwigiaceae, Willdenowia 11, 3–11 (1981), in German

    Google Scholar 

  129. H.G. Edelmann, C. Neinhuis, M. Jarvis, B. Evans, E. Fischer, W. Barthlott: Ultrastructure and chemistry of the cell wall of the moss Rhacocarpus purpurascens (Rhacocarpaceae): A puzzling architecture among plants, Planta 206, 315–321 (1998)

    Article  Google Scholar 

  130. A. Otten, S. Herminghaus: How plants keep dry: A physicistʼs point of view, Langmuir 20, 2405–2408 (2004)

    Article  Google Scholar 

  131. W.E. Ward: The lotus symbol: Its meaning in Buddhist art and philosophy, J. Aesthet. Art Crit. 11, 135–146 (1952)

    Article  Google Scholar 

  132. T.S. Chow: Nanoscale surface roughness and particle adhesion on structures substrates, Nanotechnology 18, 1–4 (2007)

    Article  Google Scholar 

  133. O. Pitois, X. Chateau: Small particle at a fluid interface: effect of contact angle hysteresis on force and work of detachment, Langmuir 18, 9751–9756 (2002)

    Article  Google Scholar 

  134. B. Bhushan, Y.C. Jung: Wetting, adhesion and friction of superhydrophobic and hydrophilic leaves and fabricated micro/nanopatterned surfaces, J. Phys.: Condens. Matter 20, 225010 (2008)

    Article  Google Scholar 

  135. A.K. Stosch, A. Solga, U. Steiner, C. Oerke, W. Barthlott, Z. Cerman: Efficiency of self-cleaning properties in wheat (Triticum aestivum L.), Appl. Bot. Food Qual. 81, 49–55 (2007)

    Google Scholar 

  136. W. Barthlott, K. Riede, M. Wolter: Mimicry and ultrastructural analogy between the semi-aquatic grasshopper Paulinia acuminata (Orthoptera: Pauliniidae) and its foodplant, the water-fern Salvinia auriculata (Filicatae: Salviniaceae), Amazoniana 13, 47–58 (1994)

    Google Scholar 

  137. M. Ayre: Biomimicry – A review. Work package report, European Space Research & Technology Centre (ESTEC) (European Space Agency (ESA), Noordwijk 2003)

    Google Scholar 

  138. D.W. Bechert, M. Bruse, W. Hage, R. Meyer: Fluid mechanics of biological surfaces and their technological application, Naturwissenschaften 87, 157–171 (2000)

    Article  Google Scholar 

  139. S.J. Abbott, P.H. Gaskell: Mass production of bio-inspired structured surfaces, Proc. Inst. Mech. Eng, Part C: J. Mech. Eng. Sci. 221, 1181–1191 (2007)

    Article  Google Scholar 

  140. H.C. Von Baeyer: The Lotus effect, The Sciences 40, 12–15 (2000)

    Google Scholar 

  141. P. Forbes: The Geckoʼs Foot (Fourth Estate, London 2005)

    Google Scholar 

  142. A.K. Geim, S.V. Dubonos, I.V. Grigorieva, K.S. Novoselov, A.A. Zhukov, S.Y. Shapoval: Microfabricated adhesive mimicking gecko foot-hair, Nat. Mater. 2, 461–463 (2003)

    Article  Google Scholar 

  143. S. Gorb, M. Varenberg, A. Peressadko, J. Tuma: Biomimetic mushroom-shaped fibrillar adhesive microstructures, J. R. Soc. Interface 4, 271–275 (2007)

    Article  Google Scholar 

  144. B. Bhushan, R.A. Sayer: Surface characterization and friction of a bio-inspired reversible adhesive tape, Microsyst. Technol. 13, 71–78 (2007)

    Article  Google Scholar 

  145. M. Zhang, M. Liu, H. Prest, S. Fischer: Nanoparticles secreted from ivy rootlets for surface climbing, Nano Lett. 8, 1277–1280 (2008)

    Article  Google Scholar 

  146. T. Speck, T. Masselter, B. Prüm, O. Speck, R. Luchsinger, S. Fink: Plants as concept generators for biomimetic light-weight structures with variable stiffness and self-repair mechanisms, J. Bionics Eng. 1, 199–205 (2004)

    Google Scholar 

  147. Y. Bar-Cohen: Biomimetics: Biologically Inspired Technologies (CRC Press Book, New York 2006)

    Google Scholar 

  148. P. Wagner, R. Fürstner, W. Barthlott, C. Neinhuis: Quantitative assessment to the structural basis of water repellency in natural and technical surfaces, J. Exp. Bot. 54, 1295–1303 (2003)

    Article  Google Scholar 

  149. Y.T. Cheng, D.E. Rodak, C.A. Wong, C.A. Hayden: Effects of micro- and nano-structures on the self-cleaning behaviour of lotus leaves, Nanotechnology 17, 1359–1362 (2006)

    Article  Google Scholar 

  150. M. Nosonovsky, B. Bhushan: Hierarchical roughness optimization for biomimetic superhydrophobic surfaces, Ultramicroscopy 107, 969–979 (2007)

    Article  Google Scholar 

  151. C.W. Extrand: Modeling of ultralyophobicity: Suspension of liquid drops by a single asperity, Langmuir 21, 10370–10374 (2005)

    Article  Google Scholar 

  152. A. Marmur: Wetting on hydrophobic rough surfaces: To be heterogeneous or not to be?, Langmuir 19, 8343–8348 (2003)

    Article  Google Scholar 

  153. S. Wang, L. Jiang: Definition of superhydrophobic states, Adv. Mater. 19, 3423–3424 (2007)

    Article  Google Scholar 

  154. L. Feng, Y. Zhang, J. Xi, Y. Zhu, N. Wang, F. Xia, L. Jiang: Petal effect: A superhydrophobic state with high adhesive force, Langmuir 24, 4114–4119 (2008)

    Article  Google Scholar 

  155. W. Li, A.A. Amirfazli: Hierarchical structures for natural superhydrophobic surfaces, Soft Matter 4, 462–466 (2008)

    Article  Google Scholar 

  156. M. Nosonovsky, B. Bhushan: Hierarchical roughness makes superhydrophobic states stable, Microelectron. Eng. 84, 382–386 (2007)

    Article  Google Scholar 

  157. M. Nosonovsky, B. Bhushan: Multiscale friction mechanisms and hierarchical surfaces in nano and bio-tribology, Mater. Sci. Eng. R 58, 162–193 (2007)

    Article  Google Scholar 

  158. M. Nosonovsky, B. Bhushan: Roughness induced superhydrophobicity: A way to design non adhesive surfaces, J. Phys. D 20, 225009 (2008)

    Google Scholar 

  159. M. Nosonovsky, B. Bhushan: Biologically inspired surfaces: Broadening the scope of roughness, Adv. Func. Mater. 18, 843–855 (2008)

    Article  Google Scholar 

  160. C.J. Brinker: Evaporation-induced self-assembly: Functional nanostructures made easy, Mater. Res. Bull. 29, 631–640 (2004)

    Article  Google Scholar 

  161. K. Koch, A. Dommisse, W. Barthlott, S. Gorb: The use of plant waxes as templates for micro- and nanopatterning of surfaces, Acta Biomater. 3, 905–909 (2007)

    Article  Google Scholar 

  162. K. Koch, A.J. Schulte, A. Fischer, S. Gorb, W. Barthlott: A fast, precise and low cost replication technique for nano- and high aspect ratio structures of biological and artifical surfaces, Bioinspir. Biomimetics 3, 046002 (2008)

    Article  Google Scholar 

  163. B. Bhushan, Y.C. Jung, A. Niemietz, K. Koch: Lotus-like biomimetic hierarchical structures developed by self-assembly of tubular plant waxes, Langmuir 25, 1659–1666 (2009)

    Article  Google Scholar 

  164. W. Barthlott: Self-cleaning surfaces of objects and process for producing same. Patent, EP 0772514 B1, 8, Germany (1998)

    Google Scholar 

  165. A. Born, J. Ermuth, C. Neinhuis: Fassadenfarbe mit Lotus-Effekt: Erfolgreiche übertragung bestätigt, Phänomen Farbe 2, 34–36 (2000)

    Google Scholar 

  166. W. Ming, D. Wu, R. van Benthem, G. de With: Superhydrophobic films from raspberrylike particles, Nano Lett. 5, 2298–2301 (2005)

    Article  Google Scholar 

  167. H. Höcker: Plasma treatment of textile fibres, Pure Appl. Chem. 74, 423–427 (2002)

    Article  Google Scholar 

  168. L. Gao, T.J. McCarthy: “Artificial Lotus Leaf” prepared using a 1945 patent and a commercial textile, Langmuir 22, 5998–6000 (2006)

    Article  Google Scholar 

  169. M. Pociute, B. Lehmann, A. Vitkauskas: Wetting behaviour of surgerical polyester woven fabrics, Mater. Sci. 9, 410–413 (2003)

    Google Scholar 

  170. E. Nun, M. Oles, B. Schleich: Lotus-Effect®-surfaces, Macromol. Symp. 187, 677–682 (2002)

    Article  Google Scholar 

  171. P. Dendl, J. Interwies: Method for imparting a self-cleaning feature to a surface, and an object provided with a surface of this type. Patent WO 2001/079141, Germany (2001)

    Google Scholar 

  172. F. Müller, P. Winter: Clean surfaces with the lotus-effect, J. Com. Esp. Deterg. 34, 103–111 (2004)

    Google Scholar 

  173. M. Nosonovsky, B. Bhushan: Multiscale Dissipative Mechanisms and Hierarchical Surfaces (Springer, Berlin Heidelberg 2008)

    MATH  Google Scholar 

  174. J. Tokunaga, M. Kumada, Y. Sugiyama, N. Watanabe, Y.B. Chong, N. Matsubara: Method of forming air film on submerged surface of submerged part-carrying structure, and film structure on submerged surface, European Patent EP 0616940 (1993) pp. 1–14

    Google Scholar 

  175. K. Fukuda, J. Tokunaga, T. Nobunaga, T. Nakatani, T. Iwasaki, Y. Kunitake: Frictional drag reduction with air lubricant over a super-water-repellent surface, J. Marine Sci. Tech. 5, 123–130 (2000)

    Article  Google Scholar 

  176. Z. Cerman, B.F. Striffler, W. Barthlott, T. Stegmeier, A. Scherrieble, V. von Arnim: Superhydrophobe Oberflächen für Unterwasseranwendungen. Patent, DE 10 2006 009, (2006), in German

    Google Scholar 

  177. J. Genzer, K. Efimenko: Recent developments in superhydrophobic surfaces and their relevance to marine fouling: A review, Biofouling 22, 339–360 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kerstin Koch , Bharat Bhushan or Wilhelm Barthlott .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag

About this chapter

Cite this chapter

Koch, K., Bhushan, B., Barthlott, W. (2010). Multifunctional Plant Surfaces and Smart Materials. In: Bhushan, B. (eds) Springer Handbook of Nanotechnology. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02525-9_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02525-9_41

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02524-2

  • Online ISBN: 978-3-642-02525-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics