Advertisement

Introduction to Carbon Nanotubes

  • Marc Monthioux
  • Philippe Serp
  • Emmanuel Flahaut
  • Manitra Razafinimanana
  • Christophe Laurent
  • Alain Peigney
  • Wolfgang Bacsa
  • Jean-Marc Broto
Part of the Springer Handbooks book series (SHB)

Abstract

Carbon nanotubes are remarkable objects that look set to revolutionize the technological landscape in the near future. Tomorrowʼs society will be shaped by nanotube applications, just as silicon-based technologies dominate society today. Space elevators tethered by the strongest of cables; hydrogen-powered vehicles; artificial muscles: these are just a few of the technological marvels that may be made possible by the emerging science of carbon nanotubes.

Of course, this prediction is still some way from becoming reality; we are still at the stage of evaluating possibilities and potential. Consider the recent example of fullerenes – molecules closely related to nanotubes. The anticipation surrounding these molecules, first reported in 1985, resulted in the bestowment of a Nobel Prize for their discovery in 1996. However, a decade later, few applications of fullerenes have reached the market, suggesting that similarly enthusiastic predictions about nanotubes should be approached with caution.

There is no denying, however, that the expectations surrounding carbon nanotubes are very high. One of the main reasons for this is the anticipated application of nanotubes to electronics. Many believe that current techniques for miniaturizing microchips are about to reach their lowest limits, and that nanotube-based technologies are the best hope for further miniaturization. Carbon nanotubes may therefore provide the building blocks for further technological progress, enhancing our standards of living.

In this chapter, we first describe the structures, syntheses, growth mechanisms and properties of carbon nanotubes. Then we discuss nanotube-related nano-objects, including those formed by reactions and associations of all-carbon nanotubes with foreign atoms, molecules and compounds, which may provide the path to hybrid materials with even better properties than pristine nanotubes. Finally, we will describe the most important current and potential applications of carbon nanotubes, which suggest that the future for the carbon nanotube industry looks very promising indeed.

Abbreviations

AC

alternating-current

AC

amorphous carbon

AFM

atomic force microscope

AFM

atomic force microscopy

BSA

bovine serum albumin

CCVD

catalytic chemical vapor deposition

CNT

carbon nanotube

CTE

coefficient of thermal expansion

CVD

chemical vapor deposition

DNA

deoxyribonucleic acid

EDC

1-ethyl-3-(3-diamethylaminopropyl) carbodiimide

FET

field-effect transistor

HP

hot-pressing

HRTEM

high-resolution transmission electron microscope

IFN

interferon

MWNT

multiwall nanotube

ODA

octadecylamine

PAH

poly(allylamine hydrochloride)

PMMA

poly(methyl methacrylate)

ROS

reactive oxygen species

SPM

scanning probe microscope

SPM

scanning probe microscopy

SPS

spark plasma sintering

SWNT

single wall nanotube

SWNT

single-wall nanotube

TEM

transmission electron microscope

TEM

transmission electron microscopy

TGA

thermogravimetric analysis

TV

television

References

  1. 3.1.
    M. Monthioux, V.L. Kuznetsov: Who should be given the credit for the discovery of carbon nanotubes?, Carbon 44, 1621–1623 (2006)CrossRefGoogle Scholar
  2. 3.2.
    L.V. Radushkevich, V.M. Lukyanovich: O strukture ugleroda, obrazujucegosja pri termiceskom razlozenii okisi ugleroda na zeleznom kontakte, Zurn. Fis. Chim. 26, 88–95 (1952), in RussianGoogle Scholar
  3. 3.3.
    T.V. Hughes, C.R. Chambers: Manufacture of Carbon Filaments, US Patent 405480 (1889)Google Scholar
  4. 3.4.
    P. Schützenberger, L. Schützenberger: Sur quelques faits relatifs à lʼhistoire du carbone, C. R. Acad. Sci. Paris 111, 774–778 (1890), in FrenchGoogle Scholar
  5. 3.5.
    C. Pélabon, H. Pélabon: Sur une variété de carbone filamenteux, C. R. Acad. Sci. Paris 137, 706–708 (1903), in FrenchGoogle Scholar
  6. 3.6.
    R.T.K. Baker, P.S. Harris: The formation of filamentous carbon. In: Chemistry and Physics of Carbon, Vol. 14, ed. by P.L. Walker Jr., P.A. Thrower (Dekker, New York 1978) pp. 83–165Google Scholar
  7. 3.7.
    S. Iijima: Helical microtubules of graphite carbon, Nature 354, 56–58 (1991)CrossRefGoogle Scholar
  8. 3.8.
    S. Iijima, T. Ichihashi: Single-shell carbon nanotubes of 1 nm diameter, Nature 363, 603–605 (1993)CrossRefGoogle Scholar
  9. 3.9.
    D.S. Bethune, C.H. Kiang, M.S. de Vries, G. Gorman, R. Savoy, J. Vazquez, R. Bayers: Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls, Nature 363, 605–607 (1993)CrossRefGoogle Scholar
  10. 3.10.
    J. Tersoff, R.S. Ruoff: Structural properties of a carbon-nanotube crystal, Phys. Rev. Lett. 73, 676–679 (1994)CrossRefGoogle Scholar
  11. 3.11.
    N. Wang, Z.K. Tang, G.D. Li, J.S. Chen: Single-walled 4 Å carbon nanotube arrays, Nature 408, 50–51 (2000)CrossRefGoogle Scholar
  12. 3.12.
    N. Hamada, S.I. Sawada, A. Oshiyama: New one-dimensional conductors, graphite microtubules, Phys. Rev. Lett. 68, 1579–1581 (1992)CrossRefGoogle Scholar
  13. 3.13.
    M.S. Dresselhaus, G. Dresselhaus, P.C. Eklund: Science of Fullerenes and Carbon Nanotubes (Academic, San Diego 1995)Google Scholar
  14. 3.14.
    R.C. Haddon: Chemistry of the fullerenes: The manifestation of strain in a class of continuous aromatic molecules, Science 261, 1545–1550 (1993)CrossRefGoogle Scholar
  15. 3.15.
    M. Monthioux, B.W. Smith, B. Burteaux, A. Claye, J. Fisher, D.E. Luzzi: Sensitivity of single-wall nanotubes to chemical processing: An electron microscopy investigation, Carbon 39, 1261–1272 (2001)CrossRefGoogle Scholar
  16. 3.16.
    H. Allouche, M. Monthioux: Chemical vapor deposition of pyrolytic carbon onto carbon nanotubes. Part II – Structure and texture, Carbon 43, 1265–1278 (2005)CrossRefGoogle Scholar
  17. 3.17.
    M. Audier, A. Oberlin, M. Oberlin, M. Coulon, L. Bonnetain: Morphology and crystalline order in catalytic carbons, Carbon 19, 217–224 (1981)CrossRefGoogle Scholar
  18. 3.18.
    Y. Saito: Nanoparticles and filled nanocapsules, Carbon 33, 979–988 (1995)CrossRefGoogle Scholar
  19. 3.19.
    P.J.F. Harris: Carbon Nanotubes and Related Structures (Cambridge Univ. Press, Cambridge 1999)CrossRefGoogle Scholar
  20. 3.20.
    N.M. Rodriguez, A. Chambers, R.T. Baker: Catalytic engineering of carbon nanostructures, Langmuir 11, 3862–3866 (1995)CrossRefGoogle Scholar
  21. 3.21.
    M. Monthioux, L. Noé, L. Dussault, J.-C. Dupin, N. Latorre, T. Ubieto, E. Romeo, C. Royo, A. Monzón, C. Guimon: Texturising and structurising mechanisms of carbon nanofilament during growth, J. Mater. Chem. 17, 4611–4618 (2007)CrossRefGoogle Scholar
  22. 3.22.
    J. Vera-Agullo, H. Varela-Rizo, J.A. Conesa, C. Almansa, C. Merino, I. Martin-Gullon: Evidence for growth mechanism and helix-spiral cone structure of stacked-cup carbon nanofibers, Carbon 45, 2751–2758 (2007)CrossRefGoogle Scholar
  23. 3.23.
    H.W. Kroto, J.R. Heath, S.C. OʼBrien, R.F. Curl, R.E. Smalley: C_60 Buckminsterfullerene, Nature 318, 162–163 (1985)CrossRefGoogle Scholar
  24. 3.24.
    W. Krätschmer, L.D. Lamb, K. Fostiropoulos, D.R. Huffman: Solid C_60: A new form of carbon, Nature 347, 354–358 (1990)CrossRefGoogle Scholar
  25. 3.25.
    L. Fulchieri, Y. Schwob, F. Fabry, G. Flamant, L.F.P. Chibante, D. Laplaze: Fullerene production in a 3-phase AC plasma process, Carbon 38, 797–803 (2000)CrossRefGoogle Scholar
  26. 3.26.
    K. Saidane, M. Razafinimanana, H. Lange, A. Huczko, M. Baltas, A. Gleizes, J.L. Meunier: Fullerene synthesis in the graphite electrode arc process: local plasma characteristics and correlation with yield, J. Phys. D Appl. Phys. 37, 232–239 (2004)CrossRefGoogle Scholar
  27. 3.27.
    T. Guo, P. Nikolaev, A.G. Rinzler, D. Tomanek, D.T. Colbert, R.E. Smalley: Self-assembly of tubular fullerenes, J. Phys. Chem. 99, 10694–10697 (1995)CrossRefGoogle Scholar
  28. 3.28.
    T. Guo, P. Nikolaev, A. Thess, D.T. Colbert, R.E. Smalley: Catalytic growth of single-walled nanotubes by laser vaporisation, Chem. Phys. Lett. 243, 49–54 (1995)CrossRefGoogle Scholar
  29. 3.29.
    A.G. Rinzler, J. Liu, H. Dai, P. Nikolaev, C.B. Huffman, F.J. Rodriguez-Macias, P.J. Boul, A.H. Lu, D. Heymann, D.T. Colbert, R.S. Lee, J.E. Fischer, A.M. Rao, P.C. Eklund, R.E. Smalley: Large scale purification of single wall carbon nanotubes: Process, product and characterization, Appl. Phys. A 67, 29–37 (1998)CrossRefGoogle Scholar
  30. 3.30.
    L.M. Chapelle, J. Gavillet, J.L. Cochon, M. Ory, S. Lefrant, A. Loiseau, D. Pigache: A continuous wave CO_2 laser reactor for nanotube synthesis, Proc. Electron. Prop. Nov. Mater. – XVI Int. Wintersch. – AIP Conf. Proc., ed. by H. Kuzmany, J. Fink, M. Mehring, S. Roth (Springer, Berlin Heidelberg 1999) pp. 237–240Google Scholar
  31. 3.31.
    A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y.H. Lee, S.G. Kim, D.T. Colbert, G. Scuseria, D. Tomanek, J.E. Fischer, R.E. Smalley: Crystalline ropes of metallic carbon nanotubes, Science 273, 487–493 (1996)CrossRefGoogle Scholar
  32. 3.32.
    M. Yudasaka, T. Komatsu, T. Ichihashi, S. Iijima: Single wall carbon nanotube formation by laser ablation using double targets of carbon and metal, Chem. Phys. Lett. 278, 102–106 (1997)CrossRefGoogle Scholar
  33. 3.33.
    M. Castignolles, A. Foutel-Richard, A. Mavel, J.L. Cochon, D. Pigache, A. Loiseau, P. Bernier: Combined experimental and numerical study of the parameters controlling the C-SWNT synthesis via laser vaporization, Proc. Electron. Prop. Nov. Mater. – XVI Int. Wintersch. – AIP Conf. Proc., ed. by H. Kuzmany, J. Fink, M. Mehring, S. Roth (Springer, Berlin Heidelberg 2002) pp. 385–389CrossRefGoogle Scholar
  34. 3.34.
    T.W. Ebbesen, P.M. Ajayan: Large-scale synthesis of carbon nanotubes, Nature 358, 220–221 (1992)CrossRefGoogle Scholar
  35. 3.35.
    D. Ugarte: Morphology and structure of graphitic soot particles generated in arc-discharge C_60 production, Chem. Phys. Lett. 198, 596–602 (1992)CrossRefGoogle Scholar
  36. 3.36.
    T.W. Ebbesen: Carbon nanotubes, Ann. Rev. Mater. Sci. 24, 235–264 (1994)CrossRefGoogle Scholar
  37. 3.37.
    T. Beltz, J. Find, D. Herein, N. Pfänder, T. Rühle, H. Werner, M. Wohlers, R. Schlögl: On the production of different carbon forms by electric arc graphite evaporation, Ber. Bunsen. Phys. Chem. 101, 712–725 (1997)CrossRefGoogle Scholar
  38. 3.38.
    C. Journet, W.K. Maser, P. Bernier, A. Loiseau, L.M. de la Chapelle, S. Lefrant, P. Deniard, R. Lee, J.E. Fischer: Large-scale production of single-walled carbon nanotubes by the electric-arc technique, Nature 388, 756–758 (1997)CrossRefGoogle Scholar
  39. 3.39.
    K. Saïdane, M. Razafinimanana, H. Lange, M. Baltas, A. Gleizes, J.J. Gonzalez: Influence of the carbon arc current intensity on fullerene synthesis, Proc. 24th Int. Conf. Phenom. Ioniz. Gases, ed. by P. Pisarczyk, T. Pisarczyk, J. Wotowski (Institute of Plasma Physics and Laser Microfusion, Warsaw 1999) pp. 203–204Google Scholar
  40. 3.40.
    H. Allouche, M. Monthioux, M. Pacheco, M. Razafinimanana, H. Lange, A. Huczko, T.P. Teulet, A. Gleizes, T. Sogabe: Physical characteristics of the graphite-electrode electric-arc as parameters for the formation of single-wall carbon nanotubes, Proc. Eurocarbon, Vol. 2 (Deutsche Keramische Gesellschaft, 2000) pp. 1053–1054Google Scholar
  41. 3.41.
    M. Razafinimanana, M. Pacheco, M. Monthioux, H. Allouche, H. Lange, A. Huczko, A. Gleizes: Spectroscopic study of an electric arc with Gd and Fe doped anodes for the carbon nanotube formation, Proc. 25th Int. Conf. Phenom. Ioniz. Gases, ed. by E. Goto (Nagoya Univ., Nagoya 2001) pp. 297–298Google Scholar
  42. 3.42.
    M. Razafinimanana, M. Pacheco, M. Monthioux, H. Allouche, H. Lange, A. Huczko, P. Teulet, A. Gleizes, C. Goze, P. Bernier, T. Sogabe: Influence of doped graphite electrode in electric arc for the formation of single wall carbon nanotubes, Proc. 6th Eur. Conf. Therm. Plasma Process. – Prog. Plasma Process. Mater., New York 2000, ed. by P. Fauchais (Begell House, New York 2001) pp. 649–654Google Scholar
  43. 3.43.
    M. Pacheco, H. Allouche, M. Monthioux, A. Razafinimanana, A. Gleizes: Correlation between the plasma characteristics and the morphology and structure of the carbon phases synthesised by electric arc discharge, Proc. 25th Bienn. Conf. Carbon, Lexington 2001, ed. by F. Derbyshire (American Carbon Society 2001), Extend. Abstr. (CD-ROM), Novel/14.1Google Scholar
  44. 3.44.
    M. Pacheco, M. Monthioux, M. Razafinimanana, L. Donadieu, H. Allouche, N. Caprais, A. Gleizes: New factors controlling the formation of single-wall carbon nanotubes by arc plasma, Proc. Carbon 2002 Int. Conf., Beijing 2002, ed. by H.-M. Cheng (Shanxi Chunqiu Audio-Visual Press, Beijing 2002), CD-ROM/Oral/I014Google Scholar
  45. 3.45.
    M. Monthioux, M. Pacheco, H. Allouche, M. Razafinimanana, N. Caprais, L. Donnadieu, A. Gleizes: New data about the formation of SWNTs by the electric arc method. In: Electronic Properties of Molecular Nanostructures, AIP Conf. Proc., ed. by H. Kuzmany, J. Fink, M. Mehring, S. Roth (Springer, Berlin Heidelberg 2002) pp. 182–185Google Scholar
  46. 3.46.
    H. Lange, A. Huczko, M. Sioda, M. Pacheco, M. Razafinimanana, A. Gleizes: Influence of gadolinium on carbon arc plasma and formation of fullerenes and nanotubes, Plasma Chem. Plasma Process 22, 523–536 (2002)CrossRefGoogle Scholar
  47. 3.47.
    C. Journet: La production de nanotubes de carbone. Ph.D. Thesis (University of Montpellier II, Montpellier 1998)Google Scholar
  48. 3.48.
    T. Sogabe, T. Masuda, K. Kuroda, Y. Hirohaya, T. Hino, T. Ymashina: Preparation of B_4C-mixed graphite by pressureless sintering and its air oxidation behavior, Carbon 33, 1783–1788 (1995)CrossRefGoogle Scholar
  49. 3.49.
    M. Ishigami, J. Cumings, A. Zettl, S. Chen: A simple method for the continuous production of carbon nanotubes, Chem. Phys. Lett. 319, 457–459 (2000)CrossRefGoogle Scholar
  50. 3.50.
    Y.L. Hsin, K.C. Hwang, F.R. Chen, J.J. Kai: Production and in-situ metal filling of carbon nanotube in water, Adv. Mater. 13, 830–833 (2001)CrossRefGoogle Scholar
  51. 3.51.
    H.W. Zhu, X.S. Li, B. Jiang, C.L. Xu, C.L. Zhu, Y.F. Zhu, D.H. Wu, X.H. Chen: Formation of carbon nanotubes in water by the electric arc technique, Chem. Phys. Lett. 366, 664–669 (2002)CrossRefGoogle Scholar
  52. 3.52.
    W.K. Maser, P. Bernier, J.M. Lambert, O. Stephan, P.M. Ajayan, C. Colliex, V. Brotons, J.M. Planeix, B. Coq, P. Molinie, S. Lefrant: Elaboration and characterization of various carbon nanostructures, Synth. Met. 81, 243–250 (1996)CrossRefGoogle Scholar
  53. 3.53.
    A. Mansour, M. Razafinimanana, M. Monthioux, M. Pacheco, A. Gleizes: A significant improvement of both yield and purity during SWCNT synthesis via the electric arc process, Carbon 45, 1651–1661 (2007)CrossRefGoogle Scholar
  54. 3.54.
    A. Mansour: Caractérisation expérimentale dʼun plasma dʼarc électrique en vue du contrôle de la synthèse des nanotubes de carbone monoparois. Ph.D. Thesis (University Paul Sabatier, Toulouse 2007)Google Scholar
  55. 3.55.
    J. Gavillet, A. Loiseau, J. Thibault, A. Maigné, O. Stéphan, P. Bernier: TEM study of the influence of the catalyst composition on the formation and growth of SWNT, Proc. Electron. Prop. Nov. Mater. – XVI Int. Wintersch. – AIP Conf. Proc., ed. by H. Kuzmany, J. Fink, M. Mehring, S. Roth (Springer, Berlin Heidelberg 2002) pp. 202–206CrossRefGoogle Scholar
  56. 3.56.
    G. Flamant, J.F. Robert, S. Marty, J.M. Gineste, J. Giral, B. Rivoire, D. Laplaze: Solar reactor scaling up. The fullerene synthesis case study, Energy 29, 801–809 (2004)CrossRefGoogle Scholar
  57. 3.57.
    T.M. Gruenberger, J. Gonzalez-Aguilar, F. Fabry, L. Fulchieri, E. Grivei, N. Probst, G. Flamant, H. Okuno, J.C. Charlier: Production of carbon nanotubes and other nanostructures via continuous 3-phase AC plasma processing, Fuller. Nanotub. Carbon Nanostruct. 12, 571–581 (2004)CrossRefGoogle Scholar
  58. 3.58.
    H. Okuno, E. Grivel, F. Fabry, T.M. Gruenberger, J.J. Gonzalez-Aguilar, A. Palnichenko, L. Fulchieri, N. Probst, J.C. Chalier: Synthesis of carbon nanotubes and nano-necklaces by thermal plasma process, Carbon 42, 2543–2549 (2004)CrossRefGoogle Scholar
  59. 3.59.
    L.P.F. Chibante, A. Thess, J.M. Alford, M.D. Diener, R.E. Smalley: Solar generation of the fullerenes, J. Phys. Chem. 97, 8696–8700 (1993)CrossRefGoogle Scholar
  60. 3.60.
    C.L. Fields, J.R. Pitts, M.J. Hale, C. Bingham, A. Lewandowski, D.E. King: Formation of fullerenes in highly concentrated solar flux, J. Phys. Chem. 97, 8701–8702 (1993)CrossRefGoogle Scholar
  61. 3.61.
    P. Bernier, D. Laplaze, J. Auriol, L. Barbedette, G. Flamant, M. Lebrun, A. Brunelle, S. Della-Negra: Production of fullerenes from solar energy, Synth. Met. 70, 1455–1456 (1995)CrossRefGoogle Scholar
  62. 3.62.
    M.J. Heben, T.A. Bekkedhal, D.L. Schultz, K.M. Jones, A.C. Dillon, C.J. Curtis, C. Bingham, J.R. Pitts, A. Lewandowski, C.L. Fields: Production of single wall carbon nanotubes using concentrated sunlight, Proc. Symp. Recent Adv. Chem. Phys. Fuller. Rel. Mater., Pennington 1996, ed. by K.M. Kadish, R.S. Ruoff (Electrochemical Society, Pennington 1996) pp. 803–811Google Scholar
  63. 3.63.
    D. Laplaze, P. Bernier, C. Journet, G. Vié, G. Flamant, E. Philippot, M. Lebrun: Evaporation of graphite using a solar furnace, Proc. 8th Int. Symp. Solar Conc. Technol., Köln 1996, ed. by M. Becker, M. Balmer (Müller, Heidelberg 1997) pp. 1653–1656Google Scholar
  64. 3.64.
    D. Laplaze, P. Bernier, W.K. Maser, G. Flamant, T. Guillard, A. Loiseau: Carbon nanotubes: The solar approach, Carbon 36, 685–688 (1998)CrossRefGoogle Scholar
  65. 3.65.
    T. Guillard, S. Cetout, L. Alvarez, J.L. Sauvajol, E. Anglaret, P. Bernier, G. Flamant, D. Laplaze: Production of carbon nanotubes by the solar route, Eur. Phys. J. 5, 251–256 (1999)CrossRefGoogle Scholar
  66. 3.66.
    D. Luxembourg, G. Flamant, A. Guillot, D. Laplaze: Hydrogen storage in solar produced single-walled carbon nanotubes, Mater. Sci. Eng. B 108, 114–119 (2004)CrossRefGoogle Scholar
  67. 3.67.
    G. Flamant, M. Bijeire, D. Luxembourg: Modelling of a solar reactor for single wall nanotubes synthesis, ASME J. Solar Energy Eng. 128, 1–124 (2006)CrossRefGoogle Scholar
  68. 3.68.
    G.G. Tibbetts, M. Endo, C.P. Beetz: Carbon fibers grown from the vapor phase: A novel material, SAMPE Journal 22, 30 (1989)Google Scholar
  69. 3.69.
    R.T.K. Baker: Catalytic growth of carbon filaments, Carbon 27, 315–323 (1989)CrossRefGoogle Scholar
  70. 3.70.
    E. Lamouroux, P. Serp, P. Kalck: Catalytic chemical vapor deposition routes towards single-walled and double-walled carbon nanotubes, Catal. Rev. Sci. Eng. 49, 341–405 (2007)CrossRefGoogle Scholar
  71. 3.71.
    R. Philippe, A. Morançais, M. Corrias, B. Caussat, Y. Kihn, P. Kalck, D. Plee, P. Gaillard, D. Bernard, P. Serp: Catalytic production of carbon nanotubes by fluidized-bed CVD, Chem. Vap. Depos. 13, 447–457 (2007)CrossRefGoogle Scholar
  72. 3.72.
    R.T.K. Baker, P.S. Harris, R.B. Thomas, R.J. Waite: Formation of filamentous carbon from iron, cobalt, and chromium catalyzed decomposition of acetylene, J. Catal. 30, 86–95 (1973)CrossRefGoogle Scholar
  73. 3.73.
    T. Koyama, M. Endo, Y. Oyuma: Carbon fibers obtained by thermal decomposition of vaporized hydrocarbon, Jpn. J. Appl. Phys. 11, 445–449 (1972)CrossRefGoogle Scholar
  74. 3.74.
    M. Endo, A. Oberlin, T. Koyama: High resolution electron microscopy of graphitizable carbon fiber prepared by benzene decomposition, Jpn. J. Appl. Phys. 16, 1519–1523 (1977)CrossRefGoogle Scholar
  75. 3.75.
    N.M. Rodriguez: A review of catalytically grown carbon nanofibers, J. Mater. Res. 8, 3233–3250 (1993)CrossRefGoogle Scholar
  76. 3.76.
    W.R. Davis, R.J. Slawson, G.R. Rigby: An unusual form of carbon, Nature 171, 756 (1953)CrossRefGoogle Scholar
  77. 3.77.
    H.P. Boehm: Carbon from carbon monoxide disproportionation on nickel and iron catalysts; morphological studies and possible growth mechanisms, Carbon 11, 583–590 (1973)CrossRefGoogle Scholar
  78. 3.78.
    M. Audier, A. Oberlin, M. Coulon: Crystallographic orientations of catalytic particles in filamentous carbon; case of simple conical particles, J. Cryst. Growth 55, 546–549 (1981)CrossRefGoogle Scholar
  79. 3.79.
    M. Audier, M. Coulon: Kinetic and microscopic aspects of catalytic carbon growth, Carbon 23, 317–323 (1985)CrossRefGoogle Scholar
  80. 3.80.
    M. Audier, A. Oberlin, M. Coulon: Study of biconic microcrystals in the middle of carbon tubes obtained by catalytic disproportionation of CO, J. Cryst. Growth 57, 524–534 (1981)CrossRefGoogle Scholar
  81. 3.81.
    A. Thaib, G.A. Martin, P. Pinheiro, M.C. Schouler, P. Gadelle: Formation of carbon nanotubes from the carbon monoxide disproportionation reaction over Co/Al_2O_3 and Co/SiO_2 catalysts, Catal. Lett. 63, 135–141 (1999)CrossRefGoogle Scholar
  82. 3.82.
    P. Pinheiro, M.C. Schouler, P. Gadelle, M. Mermoux, E. Dooryhée: Effect of hydrogen on the orientation of carbon layers in deposits from the carbon monoxide disproportionation reaction over Co/Al_2O_3 catalysts, Carbon 38, 1469–1479 (2000)CrossRefGoogle Scholar
  83. 3.83.
    P. Pinheiro, P. Gadelle: Chemical state of a supported iron-cobalt catalyst during CO disproportionation. I. Thermodynamic study, J. Phys. Chem. Solids 62, 1015–1021 (2001)CrossRefGoogle Scholar
  84. 3.84.
    P. Pinheiro, P. Gadelle, C. Jeandey, J.L. Oddou: Chemical state of a supported iron-cobalt catalyst during CO disproportionation. II. Experimental study, J. Phys. Chem. Solids 62, 1023–1037 (2001)CrossRefGoogle Scholar
  85. 3.85.
    C. Laurent, E. Flahaut, A. Peigney, A. Rousset: Metal nanoparticles for the catalytic synthesis of carbon nanotubes, New J. Chem. 22, 1229–1237 (1998)CrossRefGoogle Scholar
  86. 3.86.
    E. Flahaut: Synthèse par voir catalytique et caractérisation de composites nanotubes de carbone-metal-oxyde Poudres et matériaux denses. Ph.D. Thesis (Univers. Paul Sabatier, Toulouse 1999)Google Scholar
  87. 3.87.
    E. Flahaut, R. Bacsa, A. Peigney, C. Laurent: Gram-scale CCVD synthesis of double-walled carbon nanotubes, Chem. Commun., 1442–1443 (2003)Google Scholar
  88. 3.88.
    A. Peigney, C. Laurent, F. Dobigeon, A. Rousset: Carbon nanotubes grown in situ by a novel catalytic method, J. Mater. Res. 12, 613–615 (1997)CrossRefGoogle Scholar
  89. 3.89.
    V. Ivanov, J.B. Nagy, P. Lambin, A. Lucas, X.B. Zhang, X.F. Zhang, D. Bernaerts, G. Van Tendeloo, S. Amelinckx, J. Van Landuyt: The study of nanotubules produced by catalytic method, Chem. Phys. Lett. 223, 329–335 (1994)CrossRefGoogle Scholar
  90. 3.90.
    V. Ivanov, A. Fonseca, J.B. Nagy, A. Lucas, P. Lambin, D. Bernaerts, X.B. Zhang: Catalytic production and purification of nanotubules having fullerene-scale diameters, Carbon 33, 1727–1738 (1995)CrossRefGoogle Scholar
  91. 3.91.
    K. Hernadi, A. Fonseca, J.B. Nagy, D. Bernaerts, A. Fudala, A. Lucas: Catalytic synthesis of carbon nanotubes using zeolite support, Zeolites 17, 416–423 (1996)CrossRefGoogle Scholar
  92. 3.92.
    H. Dai, A.G. Rinzler, P. Nikolaev, A. Thess, D.T. Colbert, R.E. Smalley: Single-wall nanotubes produced by metal-catalysed disproportionation of carbon monoxide, Chem. Phys. Lett. 260, 471–475 (1996)CrossRefGoogle Scholar
  93. 3.93.
    A.M. Cassel, J.A. Raymakers, J. Kong, H. Dai: Large scale CVD synthesis of single-walled carbon nanotubes, J. Phys. Chem. B 109, 6484–6492 (1999)CrossRefGoogle Scholar
  94. 3.94.
    B. Kitiyanan, W.E. Alvarez, J.H. Harwell, D.E. Resasco: Controlled production of single-wall carbon nanotubes by catalytic decomposition of CO on bimetallic Co-Mo catalysts, Chem. Phys. Lett. 317, 497–503 (2000)CrossRefGoogle Scholar
  95. 3.95.
    A. Govindaraj, E. Flahaut, C. Laurent, A. Peigney, A. Rousset, C.N.R. Rao: An investigation of carbon nanotubes obtained from the decomposition of methane over reduced Mg_1-xM_xAl_2O_4 spinel catalysts, J. Mater. Res. 14, 2567–2576 (1999)CrossRefGoogle Scholar
  96. 3.96.
    E. Flahaut, A. Peigney, C. Laurent, A. Rousset: Synthesis of single-walled carbon nanotube-Co-MgO composite powders and extraction of the nanotubes, J. Mater. Chem. 10, 249–252 (2000)CrossRefGoogle Scholar
  97. 3.97.
    J. Kong, A.M. Cassel, H. Dai: Chemical vapor deposition of methane for single-walled carbon nanotubes, Chem. Phys. Lett. 292, 567–574 (1998)CrossRefGoogle Scholar
  98. 3.98.
    E. Flahaut, A. Peigney, W.S. Bacsa, R.R. Bacsa, C. Laurent: CCVD synthesis of carbon nanotubes from (Mg,Co, Mo)O catalysts: Influence of the proportions of cobalt and molybdenum, J. Mater. Chem. 14, 646–653 (2004)CrossRefGoogle Scholar
  99. 3.99.
    E. Flahaut, C. Laurent, A. Peigney: Catalytic CVD synthesis of double and triple-walled carbon nanotubes by the control of the catalyst preparation, Carbon 43, 375–383 (2005)CrossRefGoogle Scholar
  100. 3.100.
    R. Marangoni, P. Serp, R. Feurrer, Y. Kihn, P. Kalck, C. Vahlas: Carbon nanotubes produced by substrate free metalorganic chemical vapor deposition of iron catalyst and ethylene, Carbon 39, 443–449 (2001)CrossRefGoogle Scholar
  101. 3.101.
    R. Sen, A. Govindaraj, C.N.R. Rao: Carbon nanotubes by the metallocene route, Chem. Phys. Lett. 267, 276–280 (1997)CrossRefGoogle Scholar
  102. 3.102.
    Y.Y. Fan, H.M. Cheng, Y.L. Wei, G. Su, S.H. Shen: The influence of preparation parameters on the mass production of vapor grown carbon nanofibers, Carbon 38, 789–795 (2000)CrossRefGoogle Scholar
  103. 3.103.
    L. Ci, J. Wei, B. Wei, J. Liang, C. Xu, D. Wu: Carbon nanofibers and single-walled carbon nanotubes prepared by the floating catalyst method, Carbon 39, 329–335 (2001)CrossRefGoogle Scholar
  104. 3.104.
    M. Glerup, H. Kanzow, R. Almairac, M. Castignolles, P. Bernier: Synthesis of multi-walled carbon nanotubes and nano-fibres using aerosol method with metal-ions as the catalyst precursors, Chem. Phys. Lett. 377, 293–298 (2003)CrossRefGoogle Scholar
  105. 3.105.
    O.A. Nerushev, M. Sveningsson, L.K.L. Falk, F. Rohmund: Carbon nanotube films obtained by thermal vapour deposition, J. Mater. Chem. 11, 1122–1132 (2001)CrossRefGoogle Scholar
  106. 3.106.
    Z. Zhou, L. Ci, L. Song, X. Yan, D. Liu, H. Yuan, Y. Gao, J. Wang, L. Liu, W. Zhou, G. Wang, S. Xie: Producing cleaner double-walled carbon nanotubes in a floating catalyst system, Carbon 41, 2607–2611 (2003)CrossRefGoogle Scholar
  107. 3.107.
    F. Rohmund, L.K.L. Falk, F.E.B. Campbell: A simple method for the production of large arrays of aligned carbon nanotubes, Chem. Phys. Lett. 328, 369–373 (2000)CrossRefGoogle Scholar
  108. 3.108.
    G.G. Tibbetts, C.A. Bernardo, D.W. Gorkiewicz, R.L. Alig: Role of sulfur in the production of carbon fibers in the vapor phase, Carbon 32, 569–576 (1994)CrossRefGoogle Scholar
  109. 3.109.
    S. Bai, F. Li, Q.H. Yang, H.-M. Cheng, J.B. Bai: Influence of ferrocene/benzene mole ratio in the synthesis of carbon nanostructures, Chem. Phys. Lett. 376, 83–89 (2003)CrossRefGoogle Scholar
  110. 3.110.
    W.Q. Han, P. Kholer-Riedlich, T. Seeger, F. Ernst, M. Ruhle, N. Grobert, W.K. Hsu, B.H. Chang, Y.Q. Zhu, H.W. Kroto, M. Terrones, H. Terrones: Aligned CN_x nanotubes by pyrolysis of ferrocene under NH_3 atmosphere, Appl. Phys. Lett. 77, 1807–1809 (2000)CrossRefGoogle Scholar
  111. 3.111.
    L. Ci, Z. Rao, Z. Zhou, D. Tang, X. Yan, Y. Liang, D. Liu, H. Yuan, W. Zhou, G. Wang, W. Liu, S. Xie: Double wall carbon nanotubes promoted by sulfur in a floating iron catalyst CVD system, Chem. Phys. Lett. 359, 63–67 (2002)CrossRefGoogle Scholar
  112. 3.112.
    S. Maruyama, R. Kojima, Y. Miyauchi, S. Chiashi, M. Kohno: Low-temperature synthesis of high-purity single-walled carbon nanotubes from alcohol, Chem. Phys. Lett. 360, 229–234 (2002)CrossRefGoogle Scholar
  113. 3.113.
    T. Kyotani, L.F. Tsai, A. Tomita: Preparation of ultrafine carbon tubes in nanochannels of an anodic aluminum oxide film, Chem. Mater. 8, 2109–2113 (1996)CrossRefGoogle Scholar
  114. 3.114.
    E. Mora, T. Tokune, A.R. Harutyunyan: Continuous production of single-walled carbon nanotubes using a supported floating catalyst, Carbon 45, 971–977 (2007)CrossRefGoogle Scholar
  115. 3.115.
    R.E. Smalley, J.H. Hafner, D.T. Colbert, K. Smith: Catalytic growth of single-wall carbon nanotubes from metal particles, US Patent 19980601010903 (1998)Google Scholar
  116. 3.116.
    P. Nikolaev: Gas-phase production of single-walled carbon nanotubes from carbon monoxide: A review of the HiPco process, J. Nanosci. Nanotechnol. 4, 307–316 (2004)CrossRefGoogle Scholar
  117. 3.117.
    W.K. Hsu, J.P. Hare, M. Terrones, H.W. Kroto, D.R.M. Walton, P.J.F. Harris: Condensed-phase nanotubes, Nature 377, 687 (1995)CrossRefGoogle Scholar
  118. 3.118.
    W.S. Cho, E. Hamada, Y. Kondo, K. Takayanagi: Synthesis of carbon nanotubes from bulk polymer, Appl. Phys. Lett. 69, 278–279 (1996)CrossRefGoogle Scholar
  119. 3.119.
    Y.L. Li, Y.D. Yu, Y. Liang: A novel method for synthesis of carbon nanotubes: Low temperature solid pyrolysis, J. Mater. Res. 12, 1678–1680 (1997)CrossRefGoogle Scholar
  120. 3.120.
    M.L. Terranova, S. Piccirillo, V. Sessa, P. Sbornicchia, M. Rossi, S. Botti, D. Manno: Growth of single-walled carbon nanotubes by a novel technique using nanosized graphite as carbon source, Chem. Phys. Lett. 327, 284–290 (2000)CrossRefGoogle Scholar
  121. 3.121.
    R.L. Vander Wal, T. Ticich, V.E. Curtis: Diffusion flame synthesis of single-walled carbon nanotubes, Chem. Phys. Lett. 323, 217–223 (2000)CrossRefGoogle Scholar
  122. 3.122.
    I. Gunjishima, T. Inoue, S. Yamamuro, K. Sumiyama, A. Okamoto: Synthesis of vertically aligned, double-walled carbon nanotubes from highly active Fe-V-O nanoparticles, Carbon 45, 1193–1199 (2007)CrossRefGoogle Scholar
  123. 3.123.
    G. Zhong, T. Iwasaki, J. Robertson, H. Kawarada: Growth kinetics of 0.5 cm vertically aligned single-walled carbon nanotubes, J. Phys. Chem. B 111, 1907–1910 (2007)CrossRefGoogle Scholar
  124. 3.124.
    H. Cui, G. Eres, J.Y. Howe, A. Puretzki, M. Varela, D.B. Geohegan, D.H. Lowndes: Growth behavior of carbon nanotubes on multilayered metal catalyst film in chemical vapor deposition, Chem. Phys. Lett. 374, 222–228 (2003)CrossRefGoogle Scholar
  125. 3.125.
    A.M. Cassel, N.R. Franklin, T.W. Tombler, E.M. Chan, J. Han, H. Dai: Directed growth of free-standing single-walled carbon nanotubes, J. Am. Chem. Soc. 121, 7975–7976 (1999)CrossRefGoogle Scholar
  126. 3.126.
    S. Fan, M. Chapline, N. Franklin, T. Tombler, A.M. Cassel, H. Dai: Self-oriented regular arrays of carbon nanotubes and their field emission properties, Science 283, 512–514 (1999)CrossRefGoogle Scholar
  127. 3.127.
    Y.Y. Wei, G. Eres, V.I. Merkulov, D.H. Lowdens: Effect of film thickness on carbon nanotube growth by selective area chemical vapor deposition, Appl. Phys. Lett. 78, 1394–1396 (2001)CrossRefGoogle Scholar
  128. 3.128.
    I.T. Han, B.K. Kim, H.J. Kim, M. Yang, Y.W. Jin, S. Jung, N. Lee, S.K. Kim, J.M. Kim: Effect of Al and catalyst thickness on the growth of carbon nanotubes and application to gated field emitter arrays, Chem. Phys. Lett. 400, 139–144 (2004)CrossRefGoogle Scholar
  129. 3.129.
    W.Z. Li, S.S. Xie, L.X. Qian, B.H. Chang, B.S. Zou, W.Y. Zhou, R.A. Zha, G. Wang: Large scale synthesis of aligned carbon nanotubes, Science 274, 1701–1703 (1996)CrossRefGoogle Scholar
  130. 3.130.
    F. Zheng, L. Liang, Y. Gao, J.H. Sukamto, L. Aardahl: Carbon nanotubes synthesis using mesoporous silica templates, Nano Lett. 2, 729–732 (2002)CrossRefGoogle Scholar
  131. 3.131.
    S.H. Jeong, O.-K. Lee, K.H. Lee, S.H. Oh, C.G. Park: Preparation of aligned carbon nanotubes with prescribed dimension: Template synthesis and sonication cutting approach, Chem. Mater. 14, 1859–1862 (2002)CrossRefGoogle Scholar
  132. 3.132.
    N.S. Kim, Y.T. Lee, J. Park, H. Ryu, H.J. Lee, S.Y. Choi, J. Choo: Dependence of vertically aligned growth of carbon nanotubes on catalyst, J. Phys. Chem. B 106, 9286–9290 (2002)CrossRefGoogle Scholar
  133. 3.133.
    C.J. Lee, D.W. Kim, T.J. Lee, Y.C. Choi, Y.S. Park, Y.H. Lee, W.B. Choi, N.S. Lee, G.-S. Park, J.M. Kim: Synthesis of aligned carbon nanotubes using thermal chemical vapor deposition, Chem. Phys. Lett. 312, 461–468 (1999)CrossRefGoogle Scholar
  134. 3.134.
    W.D. Zhang, Y. Wen, S.M. Liu, W.C. Tjiu, G.Q. Xu, L.M. Gan: Synthesis of vertically aligned carbon nanotubes on metal deposited quartz plates, Carbon 40, 1981–1989 (2002)CrossRefGoogle Scholar
  135. 3.135.
    S. Huang, L. Dai, A.W.H. Mau: Controlled fabrication of large scale aligned carbon nanofiber/nanotube patterns by photolithography, Adv. Mater. 14, 1140–1143 (2002)CrossRefGoogle Scholar
  136. 3.136.
    T. Sun, G. Wang, H. Liu, L. Feng, D. Zhu: Control over the wettability of an aligned carbon nanotube film, J. Am. Chem. Soc. 125, 14996–14997 (2003)CrossRefGoogle Scholar
  137. 3.137.
    Y. Huh, J.Y. Lee, J. Cheon, Y.K. Hong, J.Y. Koo, T.J. Lee, C.J. Lee: Controlled growth of carbon nanotubes over cobalt nanoparticles by thermal chemical vapor deposition, J. Mater. Chem. 13, 2297–2300 (2003)CrossRefGoogle Scholar
  138. 3.138.
    Y. Kobayashi, H. Nakashima, D. Takagi, Y. Homma: CVD growth of single-walled carbon nanotubes using size-controlled nanoparticle catalyst, Thin Solid Films 464/465, 286–289 (2004)CrossRefGoogle Scholar
  139. 3.139.
    C.L. Cheung, A. Kurtz, H. Park, C.M. Lieber: Diameter-controlled synthesis of carbon nanotubes, J. Phys. Chem. B 106, 2429–2433 (2002)CrossRefGoogle Scholar
  140. 3.140.
    Y. Huh, J.Y. Lee, J. Cheon, Y.K. Hong, J.Y. Koo, T.J. Lee, C.J. Lee: Controlled growth of carbon nanotubes over cobalt nanoparticles by thermal chemical vapor deposition, J. Mater. Chem. 13, 2297–2300 (2003)CrossRefGoogle Scholar
  141. 3.141.
    M. Paillet, V. Jourdain, P. Poncharal, J.-L. Sauvajol, A. Zahab, J.C. Meyer, S. Roth, N. Cordente, C. Amiens, B. Chaudret: Versatile synthesis of individual single-walled carbon nanotubes from nickel nanoparticles for the study of their physical properties, J. Phys. Chem. B 108, 17112–17118 (2004)CrossRefGoogle Scholar
  142. 3.142.
    S. Casimirius, E. Flahaut, C. Laurent, C. Vieu, F. Carcenac, C. Laberty-Robert: Optimized microcontact printing process for the patterned growth of individual SWNTs, Microelectron. Eng. 73/74, 564–569 (2004)CrossRefGoogle Scholar
  143. 3.143.
    Y. Lei, K.S. Yeong, J.T.L. Thong, W.K. Chim: Large-scale ordered carbon nanotubes arrays initiated from highly ordered catalyst arrays on silicon substrates, Chem. Mater. 16, 2757–2761 (2004)CrossRefGoogle Scholar
  144. 3.144.
    Q. Ye, A.M. Cassel, H. Liu, K.J. Chao, J. Han, M. Meyyappan: Large-scale fabrication of carbon nanotube probe tips for atomic force microscopy critical dimension imaging applications, Nano Lett. 4, 1301–1308 (2004)CrossRefGoogle Scholar
  145. 3.145.
    K. Hata, D.N. Futaba, K. Mizuno, T. Namai, M. Yumara, S. Iijima: Ware-assisted highly efficient synthesis of impurity-free single-walled carbon nanotubes, Science 306, 1362–1364 (2004)CrossRefGoogle Scholar
  146. 3.146.
    R. Andrews, D. Jacques, A.M. Rao, F. Derbyshire, D. Qian, X. Fan, E.C. Dickey, J. Chen: Continous production of aligned carbon nanotubes: A step closer to commercial realization, Chem. Phys. Lett. 303, 467–474 (1999)CrossRefGoogle Scholar
  147. 3.147.
    C.N.R. Rao, R. Sen, B.C. Satishkumar, A. Govindaraj: Large aligned carbon nanotubes bundles from ferrocene pyrolysis, Chem. Commun., 1525–1526 (1998)Google Scholar
  148. 3.148.
    X. Zhang, A. Cao, B. Wei, Y. Li, J. Wei, C. Xu, D. Wu: Rapid growth of well-aligned carbon nanotube arrays, Chem. Phys. Lett. 362, 285–290 (2002)CrossRefGoogle Scholar
  149. 3.149.
    X. Zhang, A. Cao, Y. Li, C. Xu, J. Liang, D. Wu, B. Wei: Self-organized arrays of carbon nanotube ropes, Chem. Phys. Lett. 351, 183–188 (2002)CrossRefGoogle Scholar
  150. 3.150.
    K.S. Choi, Y.S. Cho, S.Y. Hong, J.B. Park, D.J. Kim: Effects of ammonia on the alignment of carbon nanotubes in metal-assisted chemical vapor deposition, J. Eur. Ceram. Soc. 21, 2095–2098 (2001)CrossRefGoogle Scholar
  151. 3.151.
    N.S. Kim, Y.T. Lee, J. Park, J.B. Han, Y.S. Choi, S.Y. Choi, J. Choo, G.H. Lee: Vertically aligned carbon nanotubes grown by pyrolysis of iron, cobalt, and nickel phthalocyanines, J. Phys. Chem. B 107, 9249–9255 (2003)CrossRefGoogle Scholar
  152. 3.152.
    C. Emmeger, J.M. Bonard, P. Mauron, P. Sudan, A. Lepora, B. Grobety, A. Züttel, L. Schlapbach: Synthesis of carbon nanotubes over Fe catalyst on aluminum and suggested growth mechanism, Carbon 41, 539–547 (2003)CrossRefGoogle Scholar
  153. 3.153.
    Q. Zhang, J. Huang, F. Wei, G. Xu, Y. Wang, W. Qian, D. Wang: Large scale production of carbon nanotubes arrays on the sphere surface from liquefied petroleum gas at low cost, Chin. Sci. Bull. 52, 2896–2902 (2007)CrossRefGoogle Scholar
  154. 3.154.
    X. Li, L. Zhang, X. Wang, I. Shimoyama, X. Sun, W.-S. Seo, H. Dai: Assembly of densely aligned single-walled carbon nanotubes from bulk materials Langmuir–Blodgett, J. Am. Chem. Soc. 129, 4890–4891 (2007)CrossRefGoogle Scholar
  155. 3.155.
    M. Endo, H.W. Kroto: Formation of carbon nanofibers, J. Phys. Chem. 96, 6941–6944 (1992)CrossRefGoogle Scholar
  156. 3.156.
    R.S. Wagner: VLS mechanisms of crystal growth. In: Whisker Technology, ed. by P.A. Levit (Wiley, New York 1970) pp. 47–72Google Scholar
  157. 3.157.
    Y.H. Lee, S.G. Kim, D. Tomanek: Catalytic growth of single-wall carbon nanotubes: An ab initio study, Phys. Rev. Lett. 78, 2393–2396 (1997)CrossRefGoogle Scholar
  158. 3.158.
    H. Dai: Carbon Nanotubes: Synthesis, integration, and properties, Acc. Chem. Res. 35, 1035–1044 (2002)CrossRefGoogle Scholar
  159. 3.159.
    V. Jourdain, H. Kanzow, M. Castignolles, A. Loiseau, P. Bernier: Sequential catalytic growth of carbon nanotubes, Chem. Phys. Lett. 364, 27–33 (2002)CrossRefGoogle Scholar
  160. 3.160.
    Y. Saito, M. Okuda, N. Fujimoto, T. Yoshikawa, M. Tomita, T. Hayashi: Single-wall carbon nanotubes growing radially from Ni fine particles formed by arc evaporation, Jpn. J. Appl. Phys. 33, L526–L529 (1994)CrossRefGoogle Scholar
  161. 3.161.
    J. Bernholc, C. Brabec, M. Buongiorno Nardelli, A. Malti, C. Roland, B.J. Yakobson: Theory of growth and mechanical properties of nanotubes, Appl. Phys. A 67, 39–46 (1998)CrossRefGoogle Scholar
  162. 3.162.
    M. Pacheco: Synthèse des nanotubes de carbone par arc electrique. Ph.D. Thesis (Université Toulouse III, Toulouse 2003)Google Scholar
  163. 3.163.
    K. Méténier, S. Bonnamy, F. Béguin, C. Journet, P. Bernier, L.M. de la Chapelle, O. Chauvet, S. Lefrant: Coalescence of single walled nanotubes and formation of multi-walled carbon nanotubes under high temperature treatments, Carbon 40, 1765–1773 (2002)CrossRefGoogle Scholar
  164. 3.164.
    P.G. Collins, P. Avouris: Nanotubes for electronics, Sci. Am. 283, 38–45 (2000)Google Scholar
  165. 3.165.
    Q.-H. Yang, P.X. Hou, S. Bai, M.Z. Wang, H.M. Cheng: Adsorption and capillarity of nitrogen in aggregated multi-walled carbon nanotubes, Chem. Phys. Lett. 345, 18–24 (2001)CrossRefGoogle Scholar
  166. 3.166.
    S. Inoue, N. Ichikuni, T. Suzuki, T. Uematsu, K. Kaneko: Capillary condensation of N_2 on multiwall carbon nanotubes, J. Phys. Chem. 102, 4689–4692 (1998)CrossRefGoogle Scholar
  167. 3.167.
    S. Agnihotri, J.P. Mota, M. Rostam-Abadi, M.J. Rood: Structural characterization of single-walled carbon nanotube bundles by experiment and molecular simulation, Langmuir 21, 896–904 (2005)CrossRefGoogle Scholar
  168. 3.168.
    M. Eswaramoorthy, R. Sen, C.N.R. Rao: A study of micropores in single-walled carbon nanotubes by the adsorption of gases and vapors, Chem. Phys. Lett. 304, 207–210 (1999)CrossRefGoogle Scholar
  169. 3.169.
    S. Furmaniak, A.P. Terzyk, P.A. Gauden, K. Lota, E. Frackowiak, F. Beguin, P. Kowalczyk: Determination of the space between closed multiwalled carbon nanotubes by GCMC simulation of nitrogen adsorption, J. Colloid Interface Sci. 317, 442–448 (2008)CrossRefGoogle Scholar
  170. 3.170.
    A. Peigney, C. Laurent, E. Flahaut, R.R. Bacsa, A. Rousset: Specific surface area of carbon nanotubes and bundles of carbon nanotubes, Carbon 39, 507–514 (2001)CrossRefGoogle Scholar
  171. 3.171.
    E. Frackowiak, S. Delpeux, K. Jurewicz, K. Szostak, D. Cazorla-Amoros, F. Béguin: Enhanced capacitance of carbon nanotubes through chemical activation, Chem. Phys. Lett. 336, 35–41 (2002)CrossRefGoogle Scholar
  172. 3.172.
    E. Raymundo-Piñero, P. Azaïs, T. Cacciaguerra, D. Cazorla-Amorós, A. Linares-Solano, F. Béguin: KOH and NaOH activation mechanisms of multiwalled carbon nanotubes with different structural organisation, Carbon 43, 786–795 (2005)CrossRefGoogle Scholar
  173. 3.173.
    S. Delpeux, K. Szostak, E. Frackowiak, F. Béguin: An efficient two-step process for producing opened multi-walled carbon nanotubes of high purity, Chem. Phys. Lett. 404, 374–378 (2005)CrossRefGoogle Scholar
  174. 3.174.
    K.A. Williams, P.C. Eklund: Monte Carlo simulation of H_2 physisorption in finite diameter carbon nanotube ropes, Chem. Phys. Lett. 320, 352–358 (2000)CrossRefGoogle Scholar
  175. 3.175.
    U. Burghaus, D. Bye, K. Cosert, J. Goering, A. Guerard, E. Kadossov, E. Lee, Y. Nadoyama, N. Richter, E. Schaefer, J. Smith, D. Ulness, B. Wymore: Methanol adsorption in carbon nanotubes, Chem. Phys. Lett. 442, 344–347 (2007)CrossRefGoogle Scholar
  176. 3.176.
    Z. Chen, W. Thiel, A. Hirsch: Reactivity of the convex and concave surfaces of single-walled carbon nanotubes (SWCNTs) towards addition reactions: dependence on the carbon-atom pyramidalization, ChemPhysChem 1, 93–97 (2003)CrossRefGoogle Scholar
  177. 3.177.
    S. Park, D. Srivastava, K. Cho: Generalized reactivity of curved surfaces: carbon nanotubes, Nano Lett. 3, 1273–1277 (2003)CrossRefGoogle Scholar
  178. 3.178.
    X. Lu, Z. Chen, P. Schleyer: Are Stone–Wales defect sites always more reactive than perfect sites in the sidewalls of single-wall carbon nanotubes?, J. Am. Chem. Soc. 127, 20–21 (2005)CrossRefGoogle Scholar
  179. 3.179.
    M. Muris, N. Dupont-Pavlosky, M. Bienfait, P. Zeppenfeld: Where are the molecules adsorbed on single-walled nanotubes?, Surf. Sci. 492, 67–74 (2001)CrossRefGoogle Scholar
  180. 3.180.
    R.B. Hallock, Y.H. Yang: Adsorption of helium and other gases to carbon nanotubes and nanotubes bundles, J. Low Temp. Phys. 134, 21–30 (2004)CrossRefGoogle Scholar
  181. 3.181.
    J. Zhu, Y. Wang, W. Li, F. Wei, Y. Yu: Density functional study of nitrogen adsorption in single-wall carbon nanotubes, Nanotechnology 18, 095707 (2007)CrossRefGoogle Scholar
  182. 3.182.
    A. Fujiwara, K. Ishii, H. Suematsu, H. Kataura, Y. Maniwa, S. Suzuki, Y. Achiba: Gas adsorption in the inside and outside of single-walled carbon nanotubes, Chem. Phys. Lett. 336, 205–211 (2001)CrossRefGoogle Scholar
  183. 3.183.
    C.M. Yang, H. Kanoh, K. Kaneko, M. Yudasaka, S. Iijima: Adsorption behaviors of HiPco single-walled carbon nanotubes aggregates for alcohol vapors, J. Phys. Chem. 106, 8994–8999 (2002)CrossRefGoogle Scholar
  184. 3.184.
    D.H. Yoo, G.H. Rue, M.H.W. Chan, Y.W. Hwang, H.K. Kim: Study of nitrogen adsorbed on open-ended nanotube bundles, J. Phys. Chem. B 107, 1540–1542 (2003)CrossRefGoogle Scholar
  185. 3.185.
    J. Jiang, S.I. Sandler: Nitrogen adsorption on carbon nanotubes bundles: Role of the external surface, Phys. Rev. B 68, 245412–1–245412–9 (2003)CrossRefGoogle Scholar
  186. 3.186.
    M. Arab, F. Picaud, C. Ramseyer, M.R. Babaa, F. Valsaque, E. McRae: Characterization of single wall carbon nanotubes by means of rare gas adsorption, J. Chem. Phys. 126, 054709 (2007)CrossRefGoogle Scholar
  187. 3.187.
    J. Zhao, A. Buldum, J. Han, J.P. Lu: Gas molecule adsorption in carbon nanotubes and nanotube bundles, Nanotechnology 13, 195–200 (2002)CrossRefGoogle Scholar
  188. 3.188.
    C. Matranga, B. Bockrath: Hydrogen-bonded and physisorbed CO in single-walled carbon nanotubes bundles, J. Phys. Chem. B 109, 4853–4864 (2005)CrossRefGoogle Scholar
  189. 3.189.
    M.D. Ellison, M.J. Crotty, D. Koh, R.L. Spray, K.E. Tate: Adsorption of NH_3 and NO_2 on single-walled carbon nanotubes, J. Phys. Chem. B 108, 7938–7943 (2004)CrossRefGoogle Scholar
  190. 3.190.
    S. Picozzi, S. Santucci, L. Lozzi, L. Valentin, B. Delley: Ozone adsorption on carbon nanotubes: The role of Stone–Wales defects, J. Chem. Phys. 120, 7147–7152 (2004)CrossRefGoogle Scholar
  191. 3.191.
    N. Chakrapani, Y.M. Zhang, S.K. Nayak, J.A. Moore, D.L. Carrol, Y.Y. Choi, P.M. Ajayan: Chemisorption of acetone on carbon nanotubes, J. Phys. Chem. B 107, 9308–9311 (2003)CrossRefGoogle Scholar
  192. 3.192.
    A. Chambers, C. Park, R.T.K. Baker, N. Rodriguez: Hydrogen storage in graphite nanofibers, J. Phys. Chem. B 102, 4253–4256 (1998)CrossRefGoogle Scholar
  193. 3.193.
    J. Giraudet, M. Dubois, D. Claves, J.P. Pinheiro, M.C. Schouler, P. Gadelle, A. Hamwi: Modifying the electronic properties of multi-wall carbon nanotubes via charge transfer, by chemical doping with some inorganic fluorides, Chem. Phys. Lett. 381, 306–314 (2003)CrossRefGoogle Scholar
  194. 3.194.
    J. Hilding, E.A. Grulke, S.B. Sinnott, D. Qian, R. Andrews, M. Jagtoyen: Sorption of butane on carbon multiwall nanotubes at room temperature, Langmuir 17, 7540–7544 (2001)CrossRefGoogle Scholar
  195. 3.195.
    K. Masenelli-Varlot, E. McRae, N. Dupont-Pavlosky: Comparative adsorption of simple molecules on carbon nanotubes. Dependence of the adsorption properties on the nanotube morphology, Appl. Surf. Sci. 196, 209–215 (2002)CrossRefGoogle Scholar
  196. 3.196.
    D.J. Browning, M.L. Gerrard, J.B. Lakeman, I.M. Mellor, R.J. Mortimer, M.C. Turpin: Studies into the storage of hydrogen in carbon nanofibers: Proposal of a possible mechanism, Nano Lett. 2, 201–205 (2002)CrossRefGoogle Scholar
  197. 3.197.
    F.H. Yang, R.T. Yang: Ab initio molecular orbital study of adsorption of atomic hydrogen on graphite: insight into hydrogen storage in carbon nanotubes, Carbon 40, 437–444 (2002)CrossRefGoogle Scholar
  198. 3.198.
    A.D. Lueking, R.T. Yang: Hydrogen spillover to enhance hydrogen storage – Study of the effect of carbon physicochemical properties, Appl. Catal. A 265, 259–268 (2004)CrossRefGoogle Scholar
  199. 3.199.
    G.E. Froudakis: Why alkali-metal-doped carbon nanotubes possess high hydrogen uptake, Nano Lett. 1, 531–533 (2001)CrossRefGoogle Scholar
  200. 3.200.
    H. Ulbricht, G. Moos, T. Hertel: Physisorption of molecular oxygen on single-wall carbon nanotube bundles and graphite, Phys. Rev. B 66, 075404–1–075404–7 (2002)CrossRefGoogle Scholar
  201. 3.201.
    H. Ulbricht, J. Kriebel, G. Moos, T. Hertel: Desorption kinetics and interaction of Xe with single-wall carbon nanotube bundles, Chem. Phys. Lett. 363, 252–260 (2002)CrossRefGoogle Scholar
  202. 3.202.
    J.-C. Charlier, X. Blase, S. Roche: Electronic and transport properties of carbon nanotubes, Rev. Mod. Phys. 79, 677–732 (2007)CrossRefGoogle Scholar
  203. 3.203.
    R. Saito, G. Dresselhaus, M.S. Dresselhaus: Physical Properties of Carbon Nanotubes (Imperial College Press, London 1998)CrossRefGoogle Scholar
  204. 3.204.
    A. Charlier, E. McRae, R. Heyd, M.F. Charlier, D. Moretti: Classification for double-walled carbon nanotubes, Carbon 37, 1779–1783 (1999)CrossRefGoogle Scholar
  205. 3.205.
    A. Charlier, E. McRae, R. Heyd, M.F. Charlier: Metal semi-conductor transitions under uniaxial stress for single- and double-walled carbon nanotubes, J. Phys. Chem. Solids 62, 439–444 (2001)CrossRefGoogle Scholar
  206. 3.206.
    P. Puech, H. Hubel, D. Dunstan, R.R. Bacsa, C. Laurent, W.S. Bacsa: Discontinuous tangential stress in double wall carbon nanotubes, Phys. Rev. Lett. 93, 095506 (2004)CrossRefGoogle Scholar
  207. 3.207.
    P.M. Ajayan, M. Terrrones, A. de la Guardia, V. Hue, N. Grobert, B.Q. Wei, H. Lezec, G. Ramanath, T.W. Ebbesen: Nanotubes in a flash – Ignition and reconstruction, Science 296, 705 (2002)CrossRefGoogle Scholar
  208. 3.208.
    H. Ajiki, T. Ando: Electronic states of carbon nanotubes, J. Phys. Soc. Jpn. 62, 1255–1266 (1993)CrossRefGoogle Scholar
  209. 3.209.
    T. Ando: Excitons in carbon nanotubes, J. Phys. Soc. Jpn. 66, 1066 (1997)MathSciNetCrossRefGoogle Scholar
  210. 3.210.
    S.M. Bachilo, M.S. Strano, C. Kittrell, R.H. Hauge, R.E. Smalley, R.B. Weisman: Structure-assigned optical spectra of single-walled carbon nanotubes, Science 298, 2361 (2002)CrossRefGoogle Scholar
  211. 3.211.
    M. Bockrath, D.H. Cobden, J. Lu, A.G. Rinzler, R.E. Smalley, L. Balents, P.L. McEuen: Luttinger liquid behaviour in carbon nanotubes, Nature 397, 598–601 (1999)CrossRefGoogle Scholar
  212. 3.212.
    C.T. White, T.N. Todorov: Carbon nanotubes as long ballistic conductors, Nature 393, 240–242 (1998)CrossRefGoogle Scholar
  213. 3.213.
    S. Frank, P. Poncharal, Z.L. Wang, W.A. de Heer: Carbon nanotube quantum resistors, Science 280, 1744–1746 (1998)CrossRefGoogle Scholar
  214. 3.214.
    W. Liang, M. Bockrath, D. Bozovic, J.H. Hafner, M. Tinkham, H. Park: Fabry–Perot interference in a nanotube electron waveguide, Nature 411, 665–669 (2001)CrossRefGoogle Scholar
  215. 3.215.
    L. Langer, V. Bayot, E. Grivei, J.-P. Issi, J.-P. Heremans, C.H. Olk, L. Stockman, C. van Haesendonck, Y. Buynseraeder: Quantum transport in a multi-walled carbon nanotube, Phys. Rev. Lett. 76, 479–482 (1996)CrossRefGoogle Scholar
  216. 3.216.
    K. Liu, S. Roth, G.S. Duesberg, G.T. Kim, D. Popa, K. Mukhopadhyay, R. Doome, J. BʼNagy: Antilocalization in multiwalled carbon nanotubes, Phys. Rev. B 61, 2375–2379 (2000)CrossRefGoogle Scholar
  217. 3.217.
    G. Fedorov, B. Lassagne, M. Sagnes, B. Raquet, J.M. Broto, F. Triozon, S. Roche, E. Flahaut: Gate-dependent magnetoresistance phenomena in carbon nanotubes, Phys. Rev. Lett. 94, 66801–66804 (2005)CrossRefGoogle Scholar
  218. 3.218.
    A. Javey, J. Guo, Q. Wang, M. Lundstrom, H. Dai: Ballistic carbon nanotube field-effect transistors, Nature 424, 654–657 (2003)CrossRefGoogle Scholar
  219. 3.219.
    Y.A. Kasumov, R. Deblock, M. Kociak, B. Reulet, H. Bouchiat, I.I. Khodos, Y.B. Gorbatov, V.T. Volkov, C. Journet, M. Burghard: Supercurrents through single-walled carbon nanotubes, Science 284, 1508–1511 (1999)CrossRefGoogle Scholar
  220. 3.220.
    B.W. Alphenaar, K. Tsukagoshi, M. Wagner: Magnetoresistance of ferromagnetically contacted carbon nanotubes, Phys. Eng. 10, 499–504 (2001)CrossRefGoogle Scholar
  221. 3.221.
    S. Berber, Y. Kwon, D. Tomanek: Unusually high thermal conductivity of carbon nanotubes, Phys. Rev. Lett. 84, 4613–4616 (2000)CrossRefGoogle Scholar
  222. 3.222.
    M.-F. Yu, O. Lourie, M.J. Dyer, K. Moloni, T.F. Kelley, R.S. Ruoff: Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load, Science 287, 637–640 (2000)CrossRefGoogle Scholar
  223. 3.223.
    D.A. Walters, L.M. Ericson, M.J. Casavant, J. Liu, D.T. Colbert, K.A. Smith, R.E. Smalley: Elastic strain of freely suspended single-wall carbon nanotube ropes, Appl. Phys. Lett. 74, 3803–3805 (1999)CrossRefGoogle Scholar
  224. 3.224.
    B.G. Demczyk, Y.M. Wang, J. Cumings, M. Hetman, W. Han, A. Zettl, R.O. Ritchie: Direct mechanical measurement of the tensile strength and elastic modulus of multiwalled carbon nanotubes, Mater. Sci. Eng. A 334, 173–178 (2002)CrossRefGoogle Scholar
  225. 3.225.
    R.P. Gao, Z.L. Wang, Z.G. Bai, W.A. De Heer, L.M. Dai, M. Gao: Nanomechanics of individual carbon nanotubes from pyrolytically grown arrays, Phys. Rev. Lett. 85, 622–625 (2000)CrossRefGoogle Scholar
  226. 3.226.
    M.M.J. Treacy, T.W. Ebbesen, J.M. Gibson: Exceptionally high Youngʼs modulus observed for individual carbon nanotubes, Nature 381, 678–680 (1996)CrossRefGoogle Scholar
  227. 3.227.
    N. Yao, V. Lordie: Youngʼs modulus of single-wall carbon nanotubes, J. Appl. Phys. 84, 1939–1943 (1998)CrossRefGoogle Scholar
  228. 3.228.
    O. Lourie, H.D. Wagner: Transmission electron microscopy observations of fracture of single-wall carbon nanotubes under axial tension, Appl. Phys. Lett. 73, 3527–3529 (1998)CrossRefGoogle Scholar
  229. 3.229.
    S.C. Tsang, Y.K. Chen, P.J.F. Harris, M.L.H. Green: A simple chemical method of opening and filling carbon nanotubes, Nature 372, 159–162 (1994)CrossRefGoogle Scholar
  230. 3.230.
    M. Monthioux: Filling single-wall carbon nanotubes, Carbon 40, 1809–1823 (2002)CrossRefGoogle Scholar
  231. 3.231.
    W.K. Hsu, S.Y. Chu, E. Munoz-Picone, J.L. Boldu, S. Firth, P. Franchi, B.P. Roberts, A. Shilder, H. Terrones, N. Grobert, Y.Q. Zhu, M. Terrones, M.E. McHenry, H.W. Kroto, D.R.M. Walton: Metallic behaviour of boron-containing carbon nanotubes, Chem. Phys. Lett. 323, 572–579 (2000)CrossRefGoogle Scholar
  232. 3.232.
    R. Czerw, M. Terrones, J.C. Charlier, X. Blasé, B. Foley, R. Kamalakaran, N. Grobert, H. Terrones, D. Tekleab, P.M. Ajayan, W. Blau, M. Rühle, D.L. Caroll: Identification of electron donor states, in N-doped carbon nanotubes, Nano Lett. 1, 457–460 (2001)CrossRefGoogle Scholar
  233. 3.233.
    O. Stephan, P.M. Ajayan, C. Colliex, P. Redlich, J.M. Lambert, P. Bernier, P. Lefin: Doping graphitic and carbon nanotube structures with boron and nitrogen, Science 266, 1683–1685 (1994)CrossRefGoogle Scholar
  234. 3.234.
    A. Loiseau, F. Willaime, N. Demoncy, N. Schramchenko, G. Hug, C. Colliex, H. Pascard: Boron nitride nanotubes, Carbon 36, 743–752 (1998)CrossRefGoogle Scholar
  235. 3.235.
    C.C. Tang, L.M. de la Chapelle, P. Li, Y.M. Liu, H.Y. Dang, S.S. Fan: Catalytic growth of nanotube and nanobamboo structures of boron nitride, Chem. Phys. Lett. 342, 492–496 (2001)CrossRefGoogle Scholar
  236. 3.236.
    K. Suenaga, C. Colliex, N. Demoncy, A. Loiseau, H. Pascard, F. Willaime: Synthesis of nanoparticles and nanotubes with well separated layers of boron-nitride and carbon, Science 278, 653–655 (1997)CrossRefGoogle Scholar
  237. 3.237.
    D. Golberg, Y. Bando, L. Bourgeois, K. Kurashima, T. Sato: Large-scale synthesis and HRTEM analysis of single-walled B- and N-doped carbon nanotube bundles, Carbon 38, 2017–2027 (2000)CrossRefGoogle Scholar
  238. 3.238.
    R.S. Lee, J. Gavillet, M. Lamy de la Chapelle, A. Loiseau, J.-L. Cochon, D. Pigache, J. Thibault, F. Willaime: Catalyst-free synthesis of boron nitride single-wall nanotubes with a preferred zig-zag configuration, Phys. Rev. B 64, 121405.1–121405.4 (2001)Google Scholar
  239. 3.239.
    B. Burteaux, A. Claye, B.W. Smith, M. Monthioux, D.E. Luzzi, J.E. Fischer: Abundance of encapsulated C_60 in single-wall carbon nanotubes, Chem. Phys. Lett. 310, 21–24 (1999)CrossRefGoogle Scholar
  240. 3.240.
    D. Ugarte, A. Châtelain, W.A. de Heer: Nanocapillarity and chemistry in carbon nanotubes, Science 274, 1897–1899 (1996)CrossRefGoogle Scholar
  241. 3.241.
    J. Cook, J. Sloan, M.L.H. Green: Opening and filling carbon nanotubes, Fuller. Sci. Technol. 5, 695–704 (1997)CrossRefGoogle Scholar
  242. 3.242.
    P.M. Ajayan, S. Iijima: Capillarity-induced filling of carbon nanotubes, Nature 361, 333–334 (1993)CrossRefGoogle Scholar
  243. 3.243.
    P.M. Ajayan, T.W. Ebbesen, T. Ichihashi, S. Iijima, K. Tanigaki, H. Hiura: Opening carbon nanotubes with oxygen and implications for filling, Nature 362, 522–525 (1993)CrossRefGoogle Scholar
  244. 3.244.
    S. Seraphin, D. Zhou, J. Jiao, J.C. Withers, R. Loufty: Yttrium carbide in nanotubes, Nature 362, 503 (1993)CrossRefGoogle Scholar
  245. 3.245.
    S. Seraphin, D. Zhou, J. Jiao, J.C. Withers, R. Loufty: Selective encapsulation of the carbides of yttrium and titanium into carbon nanoclusters, Appl. Phys. Lett. 63, 2073–2075 (1993)CrossRefGoogle Scholar
  246. 3.246.
    R.S. Ruoff, D.C. Lorents, B. Chan, R. Malhotra, S. Subramoney: Single-crystal metals encapsulated in carbon nanoparticles, Science 259, 346–348 (1993)CrossRefGoogle Scholar
  247. 3.247.
    A. Loiseau, H. Pascard: Synthesis of long carbon nanotubes filled with Se, S, Sb, and Ge by the arc method, Chem. Phys. Lett. 256, 246–252 (1996)CrossRefGoogle Scholar
  248. 3.248.
    N. Demoncy, O. Stephan, N. Brun, C. Colliex, A. Loiseau, H. Pascard: Filling carbon nanotubes with metals by the arc discharge method: The key role of sulfur, Eur. Phys. J. B 4, 147–157 (1998)Google Scholar
  249. 3.249.
    C.H. Kiang, J.S. Choi, T.T. Tran, A.D. Bacher: Molecular nanowires of 1 nm diameter from capillary filling of single-walled carbon nanotubes, J. Phys. Chem. B 103, 7449–7551 (1999)CrossRefGoogle Scholar
  250. 3.250.
    Z.L. Zhang, B. Li, Z.J. Shi, Z.N. Gu, Z.Q. Xue, L.M. Peng: Filling of single-walled carbon nanotubes with silver, J. Mater. Res. 15, 2658–2661 (2000)CrossRefGoogle Scholar
  251. 3.251.
    A. Govindaraj, B.C. Satishkumar, M. Nath, C.N.R. Tao: Metal nanowires and intercalated metal layers in single-walled carbon nanotubes bundles, Chem. Mater. 12, 202–205 (2000)CrossRefGoogle Scholar
  252. 3.252.
    J. Mittal, M. Monthioux, H. Allouche: Room temperature filling of single-wall carbon nanotubes with chromium oxide in open air, Chem. Phys. Lett. 339, 311–318 (2001)CrossRefGoogle Scholar
  253. 3.253.
    E. Dujardin, T.W. Ebbesen, H. Hiura, K. Tanigaki: Capillarity and wetting of carbon nanotubes, Science 265, 1850–1852 (1994)CrossRefGoogle Scholar
  254. 3.254.
    E. Flahaut, J. Sloan, K.S. Coleman, V.C. Williams, S. Friedrichs, N. Hanson, M.L.H. Green: 1D p-block halide crystals confined into single walled carbon nanotubes, Proc. Mater. Res. Soc. Symp., Vol. 633 (2001) pp. A13.15.1–A13.15.6Google Scholar
  255. 3.255.
    J. Sloan, A.I. Kirkland, J.L. Hutchison, M.L.H. Green: Integral atomic layer architectures of 1D crystals inserted into single walled carbon nanotubes, Chem. Commun., 1319–1332 (2002)Google Scholar
  256. 3.256.
    J. Sloan, M.C. Novotny, S.R. Bailey, G. Brown, C. Xu, V.C. Williams, S. Friedrichs, E. Flahaut, R.L. Callender, A.P.E. York, K.S. Coleman, M.L.H. Green, R.E. Dunin-Borkowski, J.L. Hutchison: Two layer 4:4 co-ordinated KI crystals grown within single walled carbon nanotubes, Chem. Phys. Lett. 329, 61–65 (2000)CrossRefGoogle Scholar
  257. 3.257.
    G. Brown, S.R. Bailey, J. Sloan, C. Xu, S. Friedrichs, E. Flahaut, K.S. Coleman, J.L. Hutchinson, R.E. Dunin-Borkowski, M.L.H. Green: Electron beam induced in situ clusterisation of 1D ZrCl_4 chains within single-walled carbon nanotubes, Chem. Commun., 845–846 (2001)Google Scholar
  258. 3.258.
    J. Sloan, D.M. Wright, H.G. Woo, S. Bailey, G. Brown, A.P.E. York, K.S. Coleman, J.L. Hutchison, M.L.H. Green: Capillarity and silver nanowire formation observed in single walled carbon nanotubes, Chem. Commun., 699–700 (1999)Google Scholar
  259. 3.259.
    X. Fan, E.C. Dickey, P.C. Eklund, K.A. Williams, L. Grigorian, R. Buczko, S.T. Pantelides, S.J. Pennycook: Atomic arrangement of iodine atoms inside single-walled carbon nanotubes, Phys. Rev. Lett. 84, 4621–4624 (2000)CrossRefGoogle Scholar
  260. 3.260.
    G. Brown, S.R. Bailey, M. Novotny, R. Carter, E. Flahaut, K.S. Coleman, J.L. Hutchison, M.L.H. Green, J. Sloan: High yield incorporation and washing properties of halides incorporated into single walled carbon nanotubes, Appl. Phys. A 76, 457–462 (2003)CrossRefGoogle Scholar
  261. 3.261.
    J. Sloan, D.E. Luzzi, A.I. Kirkland, J.L. Hutchison, M.L.H. Green: Imaging and characterization of molecules and one-dimensional crystals formed within carbon nanotubes, Mater. Res. Soc. Bull. 29, 265–271 (2004)CrossRefGoogle Scholar
  262. 3.262.
    J. Chancolon, F. Archaimbault, A. Pineau, S. Bonnamy: Confinement of selenium into carbon nanotubes, Fuller. Nanotub. Carbon Nanostruct. 13, 189–194 (2005)CrossRefGoogle Scholar
  263. 3.263.
    B.W. Smith, M. Monthioux, D.E. Luzzi: Encapsulated C_60 in carbon nanotubes, Nature 396, 323–324 (1998)CrossRefGoogle Scholar
  264. 3.264.
    B.W. Smith, D.E. Luzzi: Formation mechanism of fullerene peapods and coaxial tubes: A path to large scale synthesis, Chem. Phys. Lett. 321, 169–174 (2000)CrossRefGoogle Scholar
  265. 3.265.
    K. Hirahara, K. Suenaga, S. Bandow, H. Kato, T. Okazaki, H. Shinohara, S. Iijima: One-dimensional metallo-fullerene crystal generated inside single-walled carbon nanotubes, Phys. Rev. Lett. 85, 5384–5387 (2000)CrossRefGoogle Scholar
  266. 3.266.
    B.W. Smith, M. Monthioux, D.E. Luzzi: Carbon nanotube encapsulated fullerenes: A unique class of hybrid material, Chem. Phys. Lett. 315, 31–36 (1999)CrossRefGoogle Scholar
  267. 3.267.
    D.E. Luzzi, B.W. Smith: Carbon cage structures in single wall carbon nanotubes: A new class of materials, Carbon 38, 1751–1756 (2000)CrossRefGoogle Scholar
  268. 3.268.
    S. Bandow, M. Takisawa, K. Hirahara, M. Yudasoka, S. Iijima: Raman scattering study of double-wall carbon nanotubes derived from the chains of fullerenes in single-wall carbon nanotubes, Chem. Phys. Lett. 337, 48–54 (2001)CrossRefGoogle Scholar
  269. 3.269.
    Y. Sakurabayashi, M. Monthioux, K. Kishita, Y. Suzuki, T. Kondo, M. Le Lay: Tayloring double wall carbon nanotubes?. In: Molecular Nanostructures, Am. Inst. Phys. Conf. Proc., Vol. 685, ed. by H. Kuzmany, J. Fink, M. Mehring, S. Roth (Springer, Berlin Heidelberg 2003) pp. 302–305Google Scholar
  270. 3.270.
    B.W. Smith, D.E. Luzzi, Y. Achiba: Tumbling atoms and evidence for charge transfer in La_2@C_80@SWNT, Chem. Phys. Lett. 331, 137–142 (2000)CrossRefGoogle Scholar
  271. 3.271.
    K. Suenaga, M. Tence, C. Mory, C. Colliex, H. Kato, T. Okazaki, H. Shinohara, K. Hirahara, S. Bandow, S. Iijima: Element-selective single atom imaging, Science 290, 2280–2282 (2000)CrossRefGoogle Scholar
  272. 3.272.
    D.E. Luzzi, B.W. Smith, R. Russo, B.C. Satishkumar, F. Stercel, N.R.C. Nemes: Encapsulation of metallofullerenes and metallocenes in carbon nanotubes, Proc. Electron. Prop. Nov. Mater. – XVI Int. Wintersch. – AIP Conf. Proc., ed. by H. Kuzmany, J. Fink, M. Mehring, S. Roth (Springer, Berlin Heidelberg 2001) pp. 622–626CrossRefGoogle Scholar
  273. 3.273.
    D.J. Hornbaker, S.-J. Kahng, S. Misra, B.W. Smith, A.T. Johnson, E.J. Mele, D.E. Luzzi, A. Yazdani: Mapping the one-dimensional electronic states of nanotube peapod structures, Science 295, 828–831 (2002)CrossRefGoogle Scholar
  274. 3.274.
    H. Kondo, H. Kino, T. Ohno: Transport properties of carbon nanotubes encapsulating C_60 and related materials, Phys. Rev. B 71, 115413 (2005)CrossRefGoogle Scholar
  275. 3.275.
    S.H. Jhang, S.W. Lee, D.S. Lee, Y.W. Park, G.H. Jeong, T. Hirata, R. Hatakeyama, U. Dettlaff, S. Roth, M.S. Kabir, E.E.B. Campbell: Random telegraph noise in carbon nanotube peapod transistors, Fuller. Nanotub. Carbon Nanostruct. 13, 195–198 (2005)CrossRefGoogle Scholar
  276. 3.276.
    G.H. Jeong, R. Hatakeyama, T. Hirata, K. Tohji, K. Motomiya, N. Sato, Y. Kawazoe: Structural deformation of single-walled carbon nanotubes and fullerene encapsulation due to magnetized plasma ion irradiation, Appl. Phys. Lett. 79, 4213–4215 (2001)CrossRefGoogle Scholar
  277. 3.277.
    Y.P. Sun, K. Fu, Y. Lin, W. Huang: Functionalized carbon nanotubes: Properties and applications, Acc. Chem. Res. 35, 1095–1104 (2002)CrossRefGoogle Scholar
  278. 3.278.
    S. Osswald, E. Flahaut, H. Ye, Y. Gogotsi: Elimination of D-band in Raman spectra of double-wall carbon nanotubes by oxidation, Chem. Phys. Lett. 402, 422–427 (2005)CrossRefGoogle Scholar
  279. 3.279.
    J. Chen, M.A. Hamon, M. Hui, C. Yongsheng, A.M. Rao, P.C. Eklund, R.C. Haddon: Solution properties of single-walled carbon nanotubes, Science 282, 95–98 (1998)CrossRefGoogle Scholar
  280. 3.280.
    J. Chen, A.M. Rao, S. Lyuksyutov, M.E. Itkis, M.A. Hamon, H. Hu, R.W. Cohn, P.C. Eklund, D.T. Colbert, R.E. Smalley, R.C. Haddon: Dissolution of full-length single-walled carbon nanotubes, J. Phys. Chem. B 105, 2525–2528 (2001)CrossRefGoogle Scholar
  281. 3.281.
    F. Pompeo, D.E. Resasco: Water solubilization of single-walled carbon nanotubes by functionalization with glucosamine, Nano Lett. 2, 369–373 (2002)CrossRefGoogle Scholar
  282. 3.282.
    Y.P. Sun, W. Huang, Y. Lin, K. Fu, A. Kitaygorodskiy, L.A. Riddle, Y.J. Yu, D.L. Carroll: Soluble dendron-functionalized carbon nanotubes: Preparation, characterization, and properties, Chem. Mater. 13, 2864–2869 (2001)CrossRefGoogle Scholar
  283. 3.283.
    K. Fu, W. Huang, Y. Lin, L.A. Riddle, D.L. Carroll, Y.P. Sun: Defunctionalization of functionalized carbon nanotubes, Nano Lett. 1, 439–441 (2001)CrossRefGoogle Scholar
  284. 3.284.
    P.W. Chiu, G.S. Duesberg, U. Dettlaff-Weglikowska, S. Roth: Interconnection of carbon nanotubes by chemical functionalization, Appl. Phys. Lett. 80, 3811–3813 (2002)CrossRefGoogle Scholar
  285. 3.285.
    T. Fukushima, T. Aida: Ionic liquids for soft functional materials with carbon nanotubes, Chem. Eur. J. 13, 5048–5058 (2007)CrossRefGoogle Scholar
  286. 3.286.
    Y. Lei, C. Xiong, L. Dong, H. Guo, X. Su, J. Yao, Y. You, D. Tian, X. Shang: Ionic liquid of ultralong carbon nanotubes, Small 3, 1889–1893 (2007)CrossRefGoogle Scholar
  287. 3.287.
    E.T. Mickelson, C.B. Huffman, A.G. Rinzler, R.E. Smalley, R.H. Hauge, J.L. Margrave: Fluorination of single-wall carbon nanotubes, Chem. Phys. Lett. 296, 188–194 (1998)CrossRefGoogle Scholar
  288. 3.288.
    V.N. Khabashesku, W.E. Billups, J.L. Margrave: Fluorination of single-wall carbon nanotubes and subsequent derivatization reactions, Acc. Chem. Res. 35, 1087–1095 (2002)CrossRefGoogle Scholar
  289. 3.289.
    P.J. Boul, J. Liu, E.T. Michelson, C.B. Huffman, L.M. Ericson, I.W. Chiang, K.A. Smith, D.T. Colbert, R.H. Hauge, J.L. Margrave, R.E. Smalley: Reversible side-wall functionalization of buckytubes, Chem. Phys. Lett. 310, 367–372 (1999)CrossRefGoogle Scholar
  290. 3.290.
    J.L. Bahr, J. Yang, D.V. Kosynkin, M.J. Bronikowski, R.E. Smalley, J.M. Tour: Functionalization of carbon nanotubes by electrochemical reduction of aryl diazonium salts: A bucky paper electrode, J. Am. Chem. Soc. 123, 6536–6542 (2001)CrossRefGoogle Scholar
  291. 3.291.
    M. Holzinger, O. Vostrowsky, A. Hirsch, F. Hennrich, M. Kappes, R. Weiss, F. Jellen: Sidewall functionalization of carbon nanotubes, Angew. Chem. Int. Ed. 40, 4002–4005 (2001)CrossRefGoogle Scholar
  292. 3.292.
    Y. Chen, R.C. Haddon, S. Fang, A.M. Rao, P.C. Eklund, W.H. Lee, E.C. Dickey, E.A. Grulke, J.C. Pendergrass, A. Chavan, B.E. Haley, R.E. Smalley: Chemical attachment of organic functional groups to single-walled carbon nanotube material, J. Mater. Res. 13, 2423–2431 (1998)CrossRefGoogle Scholar
  293. 3.293.
    C. Velasco-Santos, A.L. Martinez-Hernandez, M. Lozada-Cassou, A. Alvarez-Castillo, V.M. Castano: Chemical functionalization of carbon nanotubes through an organosilane, Nanotechnology 13, 495–498 (2002)CrossRefGoogle Scholar
  294. 3.294.
    A. Star, J.F. Stoddart, D. Steuerman, M. Diehl, A. Boukai, E.W. Wong, X. Yang, S.W. Chung, H. Choi, J.R. Heath: Preparation and properties of polymer-wrapped single-walled carbon nanotubes, Angew. Chem. Int. Ed. 41, 1721–1725 (2002)CrossRefGoogle Scholar
  295. 3.295.
    A. Pénicaud, P. Poulin, A. Derré, E. Anglaret, P. Petit: Spontaneous dissolution of a single-wall carbon nanotube salt, J. Am. Chem. Soc. 127, 8–9 (2005)CrossRefGoogle Scholar
  296. 3.296.
    R. Stevens, C. Nguyen, A. Cassel, L. Delzeit, M. Meyyapan, J. Han: Improved fabrication approach for carbon nanotube probe devices, Appl. Phys. Lett. 77, 3453–3455 (2000)CrossRefGoogle Scholar
  297. 3.297.
    J.H. Hafner, C.L. Cheung, A.T. Wooley, C.M. Lieber: Structural and functional imaging with carbon nanotube AFM probes, Progr. Biophys. Mol. Biol. 77, 73–110 (2001)CrossRefGoogle Scholar
  298. 3.298.
    S.S. Wong, E. Joselevich, A.T. Woodley, C.L. Cheung, C.M. Lieber: Covalently functionalized nanotubes as nanometre-size probes in chemistry and biology, Nature 394, 52–55 (1998)CrossRefGoogle Scholar
  299. 3.299.
    C.L. Cheung, J.H. Hafner, C.M. Lieber: Carbon nanotube atomic force microscopy tips: Direct growth by chemical vapor deposition and application to high-resolution imaging, Proc. Natl. Acad. Sci. USA 97, 3809–3813 (2000)CrossRefGoogle Scholar
  300. 3.300.
    W.A. de Heer, A. Châtelain, D. Ugarte: A carbon nanotube field-emission electron source, Science 270, 1179–1180 (1995)CrossRefGoogle Scholar
  301. 3.301.
    J.M. Bonard, J.P. Salvetat, T. Stockli, W.A. de Heer, L. Forro, A. Chatelâin: Field emission from single-wall carbon nanotube films, Appl. Phys. Lett. 73, 918–920 (1998)CrossRefGoogle Scholar
  302. 3.302.
    W. Zhu, C. Bower, O. Zhou, G. Kochanski, S. Jin: Large curent density from carbon nanotube field emitters, Appl. Phys. Lett. 75, 873–875 (1999)CrossRefGoogle Scholar
  303. 3.303.
    Y. Saito, R. Mizushima, T. Tanaka, K. Tohji, K. Uchida, M. Yumura, S. Uemura: Synthesis, structure, and field emission of carbon nanotubes, Fuller. Sci. Technol. 7, 653–664 (1999)CrossRefGoogle Scholar
  304. 3.304.
    J. Kong, N.R. Franklin, C. Zhou, M.G. Chapline, S. Peng, K. Cho, H. Dai: Nanotube molecular wire as chemical sensors, Science 287, 622–625 (2000)CrossRefGoogle Scholar
  305. 3.305.
    P.G. Collins, K. Bradley, M. Ishigami, A. Zettl: Extreme oxygen sensitivity of electronic properties of carbon nanotubes, Science 287, 1801–1804 (2000)CrossRefGoogle Scholar
  306. 3.306.
    H. Chang, J.D. Lee, S.M. Lee, Y.H. Lee: Adsorption of NH_3 and NO_2 molecules on carbon nanotubes, Appl. Phys. Lett. 79, 3863–3865 (2001)CrossRefGoogle Scholar
  307. 3.307.
    C. Cantalini, L. Valentini, L. Lozzi, I. Armentano, J.M. Kenny, S. Santucci: NO_2 gas sensitivity of carbon nanotubes obtained by plasma enhanced chemical vapor deposition, Sens. Actuators B 93, 333–337 (2003)CrossRefGoogle Scholar
  308. 3.308.
    J. Li, Y. Lu, Q. Ye, M. Cinke, J. Han, M. Meyyappan: Carbon nanotubes sensors for gas and organic vapor detection, Nano Lett. 3, 929–933 (2003)CrossRefGoogle Scholar
  309. 3.309.
    O.K. Varghese, P.D. Kichambre, D. Gong, K.G. Ong, E.C. Dickey, C.A. Grimes: Gas sensing characteristics of multi-wall carbon nanotubes, Sens. Actuators B 81, 32–41 (2001)CrossRefGoogle Scholar
  310. 3.310.
    K.G. Ong, K. Zeng, C.A. Grimes: A wireless, passive carbon nanotube-based gas sensor, IEEE Sens. J. 2(2), 82–88 (2002)CrossRefGoogle Scholar
  311. 3.311.
    J. Kong, M.G. Chapline, H. Dai: Functionalized carbon nanotubes for molecular hydrogen sensors, Adv. Mater. 13, 1384–1386 (2001)CrossRefGoogle Scholar
  312. 3.312.
    A. Modi, N. Koratkar, E. Lass, B. Wei, P.M. Ajayan: Miniaturized gas ionisation sensors using carbon nanotubes, Nature 424, 171–174 (2003)CrossRefGoogle Scholar
  313. 3.313.
    F. Rodriguez-Reinoso: The role of carbon materials in heterogeneous catalysis, Carbon 36, 159–175 (1998)CrossRefGoogle Scholar
  314. 3.314.
    E. Auer, A. Freund, J. Pietsch, T. Tacke: Carbon as support for industrial precious metal catalysts, Appl. Catal. A 173, 259–271 (1998)CrossRefGoogle Scholar
  315. 3.315.
    J.M. Planeix, N. Coustel, B. Coq, B. Botrons, P.S. Kumbhar, R. Dutartre, P. Geneste, P. Bernier, P.M. Ajayan: Application of carbon nanotubes as supports in heterogeneous catalysis, J. Am. Chem. Soc. 116, 7935–7936 (1994)CrossRefGoogle Scholar
  316. 3.316.
    P. Serp, M. Corrias, P. Kalck: Carbon nanotubes and nanofibers in catalysis, Appl. Catal. A 253, 337–358 (2003)CrossRefGoogle Scholar
  317. 3.317.
    K.P. De Jong, J.W. Geus: Carbon nanofibers: catalytic synthesis and applications, Catal. Rev. 42, 481–510 (2000)CrossRefGoogle Scholar
  318. 3.318.
    N.F. Goldshleger: Fullerene and fullerene-based materials in catalysis, Fuller. Sci. Technol. 9, 255–280 (2001)CrossRefGoogle Scholar
  319. 3.319.
    X. Pan, Z. Fan, W. Chen, Y. Ding, H. Luo, X. Bao: Enhanced ethanol production inside carbon-nanotube reactors containing catalytic particles, Nat. Mater. 6, 507–511 (2007)CrossRefGoogle Scholar
  320. 3.320.
    M.F.R. Pereira, J.L. Figueiredo, J.J.M. Órfão, P. Serp, P. Kalck, Y. Kihn: Catalytic activity of carbon nanotubes in the oxidative dehydrogenation of ethylbenzene, Carbon 42, 2807–2813 (2004)CrossRefGoogle Scholar
  321. 3.321.
    G. Mestl, N.I. Maksimova, N. Keller, V.V. Roddatis, R. Schlögl: Carbon nanofilaments in heterogeneous catalysis: An industrial application for new carbon materials?, Angew. Chem. Int. Ed. Engl. 40, 2066–2068 (2001)CrossRefGoogle Scholar
  322. 3.322.
    N. Muradov: Catalysis of methane decomposition over elemental carbon, Catal. Commun. 2, 89–94 (2001)CrossRefGoogle Scholar
  323. 3.323.
    J.E. Fischer, A.T. Johnson: Electronic properties of carbon nanotubes, Curr. Opin. Solid State Mater. Sci. 4, 28–33 (1999)CrossRefGoogle Scholar
  324. 3.324.
    M. Menon, A.N. Andriotis, G.E. Froudakis: Curvature dependence of the metal catalyst atom interaction with carbon nanotubes walls, Chem. Phys. Lett. 320, 425–434 (2000)CrossRefGoogle Scholar
  325. 3.325.
    N. Ishigami, H. Ago, Y. Motoyama, M. Takasaki, M. Shinagawa, K. Takahashi, T. Ikuta, M. Tsuji: Microreactor utilizing a vertically-aligned carbon nanotube array grown inside the channels, Chem. Commun., 1626 (2007)Google Scholar
  326. 3.326.
    G.G. Wildgoose, C.E. Banks, R.G. Compton: Metal nanoparticles and related materials supported on carbon nanotubes: methods and applications, Small 2, 182–193 (2006)CrossRefGoogle Scholar
  327. 3.327.
    T. Kyotani, S. Nakazaki, W.-H. Xu, A. Tomita: Chemical modification of the inner walls of carbon nanotubes by HNO_3 oxidation, Carbon 39, 782–785 (2001)CrossRefGoogle Scholar
  328. 3.328.
    Z.J. Liu, Z.Y. Yuan, W. Zhou, L.M. Peng, Z. Xu: Co/carbon nanotubes monometallic system: The effects of oxidation by nitric acid, PhysChemChemPhys 3, 2518–2521 (2001)Google Scholar
  329. 3.329.
    R. Giordano, P. Serp, P. Kalck, Y. Kihn, J. Schreiber, C. Marhic, J.-L. Duvail: Preparation of rhodium supported on carbon canotubes catalysts via surface mediated organometallic reaction, Eur. J. Inorg. Chem. 2003, 610–617 (2003)CrossRefGoogle Scholar
  330. 3.330.
    A. Carrillo, J.A. Swartz, J.M. Gamba, R.S. Kane, N. Chakrapani, B. Wei, P.M. Ajayan: Noncovalent functionalization of graphite and carbon nanotubes with polymer multilayers and gold nanoparticles, Nano Lett. 3, 1437–1440 (2003)CrossRefGoogle Scholar
  331. 3.331.
    Z. Liu, X. Lin, J.Y. Lee, W. Zhang, M. Han, L.M. Gan: Preparation and characterization of platinum-based electrocatalysts on multiwalled carbon nanotubes for proton exchange membrane fuel cells, Langmuir 18, 4054–4060 (2002)CrossRefGoogle Scholar
  332. 3.332.
    H.-B. Chen, J.D. Lin, Y. Cai, X.Y. Wang, J. Yi, J. Wang, G. Wei, Y.Z. Lin, D.W. Liao: Novel multi-walled nanotube-supported and alkali-promoted Ru catalysts for ammonia synthesis under atmospheric pressure, Appl. Surf. Sci. 180, 328–335 (2001)CrossRefGoogle Scholar
  333. 3.333.
    Y. Zhang, H.B. Zhang, G.D. Lin, P. Chen, Y.Z. Yuan, K.R. Tsai: Preparation, characterization and catalytic hydroformylation properties of carbon nanotubes-supported Rh-phosphine catalyst, Appl. Catal. A 187, 213–224 (1999)CrossRefGoogle Scholar
  334. 3.334.
    M.S. Dresselhaus, K.A. Williams, P.C. Eklund: Hydrogen adsorption in carbon materials, Mater. Res. Soc. Bull. 24, 45–50 (1999)Google Scholar
  335. 3.335.
    H.-M. Cheng, Q.-H. Yang, C. Liu: Hydrogen storage in carbon nanotubes, Carbon 39, 1447–1454 (2001)CrossRefGoogle Scholar
  336. 3.336.
    G.G. Tibbetts, G.P. Meisner, C.H. Olk: Hydrogen storage capacity of carbon nanotubes, filaments, and vapor-grown fibers, Carbon 39, 2291–2301 (2001)CrossRefGoogle Scholar
  337. 3.337.
    F.L. Darkrim, P. Malbrunot, G.P. Tartaglia: Review of hydrogen storage adsorption in carbon nanotubes, Int. J. Hydrogen Energy 27, 193–202 (2002)CrossRefGoogle Scholar
  338. 3.338.
    G.E. Froudakis: Hydrogen interaction with carbon nanotubes: a review of ab initio studies, J. Phys. Condens. Matter 14, R453–R465 (2002)CrossRefGoogle Scholar
  339. 3.339.
    M. Hirscher, M. Becher: Hydrogen storage in carbon nanotubes, J. Nanosci. Nanotechnol. 3(1/2), 3–17 (2003)CrossRefGoogle Scholar
  340. 3.340.
    P. Kowalczyk, R. Hołyst, M. Terrones, H. Terrones: Hydrogen storage in nanoporous carbon materials: myth and facts, PhysChemChemPhys 9(15), 1786–1792 (2007)Google Scholar
  341. 3.341.
    C. Park, P.E. Anderson, C.D. Tan, R. Hidalgo, N. Rodriguez: Further studies of the interaction of hydrogen with graphite nanofibers, J. Phys. Chem. B 103, 10572–10581 (1999)CrossRefGoogle Scholar
  342. 3.342.
    S.M. Lee, H.Y. Lee: Hydrogen storage in single-walled carbon nanotubes, Appl. Phys. Lett. 76, 2877–2879 (2000)CrossRefGoogle Scholar
  343. 3.343.
    X. Zhang, D. Cao, J. Chen: Hydrogen adsorption storage on single-walled carbon nanotube arrays by a combination of classical potential and density functional theory, J. Phys. Chem. B 107, 4942–4950 (2003)CrossRefGoogle Scholar
  344. 3.344.
    H.M. Cheng, G.P. Pez, A.C. Cooper: Mechanism of hydrogen sorption in single-walled carbon nanotubes, J. Am. Chem. Soc. 123, 5845–5846 (2001)CrossRefGoogle Scholar
  345. 3.345.
    C.-H. Chen, C.-C. Huang: Hydrogen storage by KOH-modified multi-walled carbon nanotubes, Int. J. Hydrogen Energy 32, 237–246 (2007)CrossRefGoogle Scholar
  346. 3.346.
    M.A. de la Casa-Lillo, F. Lamari-Darkrim, D. Cazorla-Amoros, A. Linares-Solano: Hydrogen storage in activated carbons and activated carbon fibers, J. Phys. Chem. B 106, 10930–10934 (2002)CrossRefGoogle Scholar
  347. 3.347.
    P. Marinelli, R. Pellenq, J. Conard: H stocké dans les carbones un site légèrement métastable, Natl. Conf. Mater., Tours (2002), AF-14-020Google Scholar
  348. 3.348.
    G. Mpourmpakis, G.E. Froudakis, G.P. Lithoxoos, J. Samios: Effect of curvature and chirality for hydrogen storage in single-walled carbon nanotubes: a combined ab initio and Monte Carlo investigation, J. Chem. Phys. 126, 144704 (2007)CrossRefGoogle Scholar
  349. 3.349.
    C.I. Weng, S.P. Ju, K.C. Fang, F.P. Chang: Atomistic study of the influences of size, VDW distance and arrangement of carbon nanotubes on hydrogen storage, Comput. Mater. Sci. 40, 300–308 (2007)CrossRefGoogle Scholar
  350. 3.350.
    A.L.M. Reddy, S. Ramaprabhu: Hydrogen storage properties of nanocrystalline Pt dispersed multi-walled carbon nanotubes, Int. J. Hydrogen Energy 32, 3998–4004 (2007)CrossRefGoogle Scholar
  351. 3.351.
    A. Kusnetzova, D.B. Mawhinney, V. Naumenko, J.T. Yates, J. Liu, R.E. Smalley: Enhancement of adsorption inside of single-walled nanotubes: Opening the entry ports, Chem. Phys. Lett. 321, 292–296 (2000)CrossRefGoogle Scholar
  352. 3.352.
    G.E. Gadd, M. Blackford, S. Moricca, N. Webb, P.J. Evans, A.M. Smith, G. Jacobsen, S. Leung, A. Day, Q. Hua: The worldʼs smallest gas cylinders?, Science 277, 933–936 (1997)CrossRefGoogle Scholar
  353. 3.353.
    Z. Mao, S.B. Sinnott: A computational study of molecular diffusion and dynamic flow through carbon nanotubes, J. Phys. Chem. B 104, 4618–4624 (2000)CrossRefGoogle Scholar
  354. 3.354.
    Z. Mao, S.B. Sinnott: Separation of organic molecular mixtures in carbon nanotubes and bundles: Molecular dynamics simulations, J. Phys. Chem. B 105, 6916–6924 (2001)CrossRefGoogle Scholar
  355. 3.355.
    H. Chen, D.S. Sholl: Rapid diffusion of CH_4/H_2 mixtures in single-walled carbon nanotubes, J. Am. Chem. Soc. 126, 7778–7779 (2004)CrossRefGoogle Scholar
  356. 3.356.
    C. Gu, G.-H. Gao, Y.X. Yu, T. Nitta: Simulation for separation of hydrogen and carbon monoxide by adsorption on single-walled carbon nanotubes, Fluid Phase Equilib. 194/197, 297–307 (2002)CrossRefGoogle Scholar
  357. 3.357.
    R.Q. Long, R.T. Yang: Carbon nanotubes as superior sorbent for dioxine removal, J. Am. Chem. Soc. 123, 2058–2059 (2001)CrossRefGoogle Scholar
  358. 3.358.
    Y.H. Li, S. Wang, A. Cao, D. Zhao, X. Zhang, C. Xu, Z. Luan, D. Ruan, J. Liang, D. Wu, B. Wei: Adsorption of fluoride from water by amorphous alumina supported on carbon nanotubes, Chem. Phys. Lett. 350, 412–416 (2001)CrossRefGoogle Scholar
  359. 3.359.
    Y.H. Li, S. Wang, J. Wei, X. Zhang, C. Xu, Z. Luan, D. Wu, B. Wei: Lead adsorption on carbon nanotubes, Chem. Phys. Lett. 357, 263–266 (2002)CrossRefGoogle Scholar
  360. 3.360.
    C. Park, E.S. Engel, A. Crowe, T.R. Gilbert, N.M. Rodriguez: Use of carbon nanofibers in the removal of organic solvents from water, Langmuir 16, 8050–8056 (2000)CrossRefGoogle Scholar
  361. 3.361.
    E. Diaz, S. Ordonez, A. Vega: Adsorption of volatile organic compounds onto carbon nanotubes, carbon nanofibers, and high-surface-area graphites, J. Colloid Interf. Sci. 305, 7–16 (2007)CrossRefGoogle Scholar
  362. 3.362.
    C.-H. Wu: Adsorption of reactive dye onto carbon nanotubes: equilibrium, kinetics and thermodynamics, J. Hazard. Mater. 144, 93–100 (2007)CrossRefGoogle Scholar
  363. 3.363.
    C. Lu, F. Su: Adsorption of natural organic matter by carbon nanotubes, Sep. Purif. Technol. 58, 113–121 (2007)CrossRefGoogle Scholar
  364. 3.364.
    C. Ye, Q.-M. Gong, F.-P. Lu: Adsorption of uraemic toxins on carbon nanotubes, Sep. Purif. Technol. 58, 2–6 (2007)CrossRefGoogle Scholar
  365. 3.365.
    X. Peng, Y. Li, Z. Luan, Z. Di, H. Wang, B. Tian, Z. Jia: Adsorption of 1,2-dichlorobenzene from water to carbon nanotubes, Chem. Phys. Lett. 376, 154–158 (2003)CrossRefGoogle Scholar
  366. 3.366.
    P. Kondratyuk, J.T. Yates: Nanotubes as molecular sponges: the adsorption of CCl_4, Chem. Phys. Lett. 383, 314–316 (2004)CrossRefGoogle Scholar
  367. 3.367.
    C. Lu, H. Chiu: Adsorption of zinc(II) from water with purified carbon nanotubes, Chem. Eng. Sci. 61, 1138 (2006)CrossRefGoogle Scholar
  368. 3.368.
    A. Stafiej, K. Pyrzynska: Adsorption of heavy metal ions with carbon nanotubes, Sep. Purif. Technol. 58, 49–52 (2007)CrossRefGoogle Scholar
  369. 3.369.
    H. Wang, A. Zhou, F. Peng, H. Yu, J. Yang: Mechanism study on adsorption of acidified multiwalled carbon nanotubes to Pb(II), J. Colloid Interf. Sci. 316, 277–283 (2007)CrossRefGoogle Scholar
  370. 3.370.
    C. Chen, X. Li, D. Zhao, X. Tan, X. Wang: Adsorption kinetic, thermodynamic and desorption studies of Th(IV) on oxidized multi-wall carbon nanotubes, Colloids Surf. A Physicochem. Eng. Asp. 302, 449–454 (2007)CrossRefGoogle Scholar
  371. 3.371.
    A. Huczko, H. Lange, E. Calko, H. Grubek-Jaworska, P. Droszcz: Physiological testing of carbon nanotubes: Are they asbestos-like?, Fuller. Sci. Technol. 9, 251–254 (2001)CrossRefGoogle Scholar
  372. 3.372.
    A.A. Shvedova, V. Castranova, E.R. Kisin, D. Schwegler-Berry, A.R. Murray, V.Z. Gandelsman, A.M. Maynard, P. Baron: Exposure to carbon nanotube material: assessment of nanotube cytotoxicity using human keratinocyte cells, Toxical Environ. Health A 66, 1909–1926 (2003)CrossRefGoogle Scholar
  373. 3.373.
    C.W. Lam, J.T. James, R. McCluskey, R.L. Hunter: Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation, Toxicol. Sci. 77, 126–134 (2004)CrossRefGoogle Scholar
  374. 3.374.
    D. Pantarotto, J.P. Briand, M. Prato, A. Bianco: Translocation of bioactive peptides across cell membranes by carbon nanotubes, Chem. Commun., 16–17 (2004)Google Scholar
  375. 3.375.
    C. Salvador-Morales, E. Flahaut, E. Sim, J. Sloan, M.L.H. Green, R.B. Sim: Complement activation and protein adsorption by carbon nanotubes, Mol. Immun. 43, 193–201 (2006)CrossRefGoogle Scholar
  376. 3.376.
    M.P. Mattson, R.C. Haddon, A.M. Rao: Molecular functionalization of carbon nanotubes and use as substrates for neuronal growth, J. Mol. Neurosci. 14, 175–182 (2000)CrossRefGoogle Scholar
  377. 3.377.
    J.J. Davis, M.L.H. Green, H.A.O. Hill, Y.C. Leung, P.J. Sadler, J. Sloan, A.V. Xavier, S.C. Tsang: The immobilization of proteins in carbon nanotubes, Inorg. Chim. Acta 272, 261–266 (1998)CrossRefGoogle Scholar
  378. 3.378.
    R.J. Chen, Y. Zhang, D. Wang, H. Dai: Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization, J. Am. Chem. Soc. 123, 3838–3839 (2001)CrossRefGoogle Scholar
  379. 3.379.
    M. Shim, N.W.S. Kam, R.J. Chen, Y. Li, H. Dai: Functionalization of carbon nanotubes for biocompatibility and biomolecular recognition, Nano Lett. 2, 285–288 (2002)CrossRefGoogle Scholar
  380. 3.380.
    C. Dwyer, M. Guthold, M. Falvo, S. Washburn, R. Superfine, D. Erie: DNA-functionalized single-walled carbon nanotubes, Nanotechnology 13, 601–604 (2002)CrossRefGoogle Scholar
  381. 3.381.
    H. Huang, S. Taylor, K. Fu, Y. Lin, D. Zhang, T.W. Hanks, A.M. Rao, Y. Sun: Attaching proteins to carbon nanotubes via diimide-activated amidation, Nano Lett. 2, 311–314 (2002)CrossRefGoogle Scholar
  382. 3.382.
    C.V. Nguyen, L. Delzeit, A.M. Cassell, J. Li, J. Han, M. Meyyappan: Preparation of nucleic acid functionalized carbon nanotube arrays, Nano Lett. 2, 1079–1081 (2002)CrossRefGoogle Scholar
  383. 3.383.
    B.R. Azamian, J.J. Davis, K.S. Coleman, C.B. Bagshaw, M.L.H. Green: Bioelectrochemical single-walled carbon nanotubes, J. Am. Chem. Soc. 124, 12664–12665 (2002)CrossRefGoogle Scholar
  384. 3.384.
    E. Katz, I. Willner: Biomolecule-functionalized carbon nanotubes: Applications in nanobioelectronics, ChemPhysChem 5, 1084–1104 (2004)CrossRefGoogle Scholar
  385. 3.385.
    J. Wang: Carbon-nanotube based electrochemical biosensors: a review, Electroanalysis 17, 7–14 (2005)CrossRefGoogle Scholar
  386. 3.386.
    T. Laha, A. Agarwal, T. McKechnie, S. Seal: Synthesis and characterization of plasma spray formed carbon nanotube reinforced aluminum composite, Mater. Sci. Eng. A 381, 249–258 (2004)CrossRefGoogle Scholar
  387. 3.387.
    T. Noguchi, A. Magario, S. Fukazawa, S. Shimizu, J. Beppu, M. Seki: Carbon nanotube/aluminium composites with uniform dispersion, Mater. Trans. 45, 602–604 (2004)CrossRefGoogle Scholar
  388. 3.388.
    Y.B. Li, Q. Ya, B.Q. Wei, J. Liang, D.H. Wu: Processing of a carbon nanotubes-Fe_82P_18 metallic glass composite, J. Mater. Sci. Lett. 17, 607–609 (1998)CrossRefGoogle Scholar
  389. 3.389.
    A. Goyal, D.A. Wiegand, F.J. Owens, Z. Iqbal: Enhanced yield strength in iron nanocomposite with in situ grown single-wall carbon nanotubes, J. Mater. Res. 21, 522–528 (2006)CrossRefGoogle Scholar
  390. 3.390.
    K.T. Kim, K.H. Lee, S.I. Cha, C.-B. Mo, S.H. Hong: Characterization of carbon nanotubes/Cu nanocomposites processed by using nano-sized Cu powders, Mater. Res. Soc. Symp. Proc. 821, 111–116 (2004)CrossRefGoogle Scholar
  391. 3.391.
    F. Zhang, J. Shen, J. Sun: Processing and properties of carbon nanotubes-nano-WC-Co composites, Mater. Sci. Eng. A 381, 86–91 (2004)CrossRefGoogle Scholar
  392. 3.392.
    C.L. Xu, B.Q. Wei, R.Z. Ma, J. Liang, X.K. Ma, D.H. Wu: Fabrication of aluminum-carbon nanotube composites and their electrical properties, Carbon 37, 855–858 (1999)CrossRefGoogle Scholar
  393. 3.393.
    T. Kuzumaki, K. Miyazawa, H. Ichinose, K. Ito: Processing of carbon nanotube reinforced aluminum composite, J. Mater. Res. 13, 2445–2449 (1998)CrossRefGoogle Scholar
  394. 3.394.
    C.F. Deng, Y.X. Ma, P. Zhang, X.X. Zhang, D.Z. Wang: Thermal expansion behaviors of aluminum composite reinforced with carbon nanotubes, Mater. Lett. 62, 2301–2303 (2008)CrossRefGoogle Scholar
  395. 3.395.
    T. Kuzumaki, O. Ujiie, H. Ichinose, K. Ito: Mechanical characteristics and preparation of carbon nanotube fiber-reinforced Ti composite, Adv. Eng. Mater. 2, 416–418 (2000)CrossRefGoogle Scholar
  396. 3.396.
    E. Carreno-Morelli, J. Yang, E. Couteau, K. Hernadi, J.W. Seo, C. Bonjour, L. Forro, R. Schaller: Carbon nanotube/magnesium composites, Phys. Status Solidi (a) 201, R53–R55 (2004)CrossRefGoogle Scholar
  397. 3.397.
    Z. Bian, R.J. Wang, W.H. Wang, T. Zhang, A. Inoue: Carbon-nanotube-reinforced Zr-based bulk metallic glass composites and their properties, Adv. Funct. Mater. 14, 55–63 (2004)CrossRefGoogle Scholar
  398. 3.398.
    S.R. Dong, J.P. Tu, X.B. Zhang: An investigation of the sliding wear behavior of Cu-matrix composite reinforced by carbon nanotubes, Mater. Sci. Eng. A 313, 83–87 (2001)CrossRefGoogle Scholar
  399. 3.399.
    J. Wang, G. Chen, M. Wang, M.P. Chatrathi: Carbon-nanotube/copper composite electrodes for capillary electrophoresis microchip detection of carbohydrates, Analyst (Cambridge) 129, 512–515 (2004)CrossRefGoogle Scholar
  400. 3.400.
    C.S. Goh, J. Wei, L.C. Lee, M. Gupta: Simultaneous enhancement in strength and ductility reinforcing magnesium with carbon nanotubes, Mater. Sci. Eng. A 423, 153–156 (2006)CrossRefGoogle Scholar
  401. 3.401.
    Q. Ngo, B.A. Cruden, A.M. Cassell, M.D. Walker, Q. Ye, J.E. Koehne, M. Meyyappan, J. Li, C.Y. Yang: Thermal conductivity of carbon nanotube composite films, Mater. Res. Soc. Symp. Proc., Vol. 812 (2004) pp. 179–184Google Scholar
  402. 3.402.
    X.H. Chen, C.S. Chen, H.N. Xiao, F.Q. Cheng, G. Zhang, G.J. Yi: Corrosion behavior of carbon nanotubes-Ni composite coating, Surf. Coat. Technol. 191, 351–356 (2005)CrossRefGoogle Scholar
  403. 3.403.
    X.H. Chen, C.S. Chen, H.N. Xiao, H.B. Liu, L.P. Zhou, S.L. Li, G. Zhang: Dry friction and wear characteristics of nickel/carbon nanotube electroless composite deposits, Tribol. Int. 39, 22–28 (2006)CrossRefGoogle Scholar
  404. 3.404.
    Z. Yang, H. Xu, M.-K. Li, Y.-L. Shi, Y. Huang, H.-L. Li: Preparation and properties of Ni-P/single-walled carbon nanotubes composite coatings by means of electroless plating, Thin Solid Films 466, 86–91 (2004)CrossRefGoogle Scholar
  405. 3.405.
    A. Peigney, C. Laurent: Carbon nanotubes ceramic composites. In: Ceramic Matrix Composites: Microstructure, Properties and Applications, ed. by I.M. Low (Woodhead, Cambridge 2006) pp. 309–333CrossRefGoogle Scholar
  406. 3.406.
    C. Laurent, A. Peigney, O. Dumortier, A. Rousset: Carbon nanotubes-Fe-alumina nanocomposites. Part II: Microstructure and mechanical properties of the hot-pressed composites, J. Eur. Ceram. Soc. 18, 2005–2013 (1998)CrossRefGoogle Scholar
  407. 3.407.
    A. Peigney, C. Laurent, E. Flahaut, A. Rousset: Carbon nanotubes in novel ceramic matrix nanocomposites, Ceram. Int. 26, 677–683 (2000)CrossRefGoogle Scholar
  408. 3.408.
    E. Flahaut, A. Peigney, C. Laurent, C. Marlière, F. Chastel, A. Rousset: Carbon nanotube-metal-oxide nanocomposites: Microstructure, electrical conductivity and mechanical properties, Acta Mater. 48, 3803–3812 (2000)CrossRefGoogle Scholar
  409. 3.409.
    J.W. An, D.H. You, D.S. Lim: Tribological properties of hot-pressed alumina-CNT composites, Wear 255, 677–681 (2003)CrossRefGoogle Scholar
  410. 3.410.
    J. Ning, J. Zhang, Y. Pan, J. Guo: Surfactants assisted processing of carbon nanotube-reinforced SiO_2 matrix composites, Ceram. Int. 30, 63–67 (2004)CrossRefGoogle Scholar
  411. 3.411.
    Q. Huang, L. Gao: Manufacture and electrical properties of multiwalled carbon nanotube/BaTiO_3 nanocomposite ceramics, J. Mater. Chem. 14, 2536–2541 (2004)CrossRefGoogle Scholar
  412. 3.412.
    J. Fan, D. Zhao, M. Wu, Z. Xu, J. Song: Preparation and microstructure of multi-wall carbon nanotubes-toughened Al2O3 composite, J. Am. Ceram. Soc. 89, 750–753 (2006)CrossRefGoogle Scholar
  413. 3.413.
    A. Peigney, S. Rul, F. Lefevre-Schlick, C. Laurent: Densification during hot-pressing of carbon nanotube metal-ceramic composites, J. Eur. Ceram. Soc. 27, 2183–2193 (2007)CrossRefGoogle Scholar
  414. 3.414.
    J. Sun, L. Gao, W. Li: Colloidal processing of carbon nanotube/alumina composites, Chem. Mater. 14, 5169–5172 (2002)CrossRefGoogle Scholar
  415. 3.415.
    G.D. Zhan, J.D. Kuntz, J. Wan, A.K. Mukherjee: Single-wall carbon nanotubes as attractive toughening agents in alumina-based composites, Nat. Mater. 2, 38–42 (2003)CrossRefGoogle Scholar
  416. 3.416.
    S.I. Cha, K.T. Kim, K.H. Lee, C.B. Mo, S.H. Hong: Strengthening and toughening of carbon nanotube reinforced alumina nanocomposite fabricated by molecular level mixing process, Scr. Mater. 53, 793–797 (2005)CrossRefGoogle Scholar
  417. 3.417.
    C.B. Mo, S.I. Cha, K.T. Kim, K.H. Lee, S.H. Hong: Fabrication of carbon nanotube reinforced alumina matrix nanocomposite by sol-gel process, Mater. Sci. Eng. A 395, 124–128 (2005)CrossRefGoogle Scholar
  418. 3.418.
    X. Wang, N.P. Padture, H. Tanaka: Contact-damage-resistant ceramic/single-wall carbon nanotubes and ceramic/graphite composites, Nat. Mater. 3, 539–544 (2004)CrossRefGoogle Scholar
  419. 3.419.
    W.A. Curtin, B.W. Sheldon: CNT-reinforced ceramics and metals, Mater. Today 7, 44–49 (2004)CrossRefGoogle Scholar
  420. 3.420.
    Z. Xia, L. Riester, W.A. Curtin, H. Li, B.W. Sheldon, J. Liang, B. Chang, J.M. Xu: Direct observation of toughening mechanisms in carbon nanotube ceramic matrix composites, Acta Mater. 52, 931–944 (2004)CrossRefGoogle Scholar
  421. 3.421.
    D.S. Lim, J.W. An, H.J. Lee: Effect of carbon nanotube addition on the tribological behavior of carbon/carbon composites, Wear 252, 512–517 (2002)CrossRefGoogle Scholar
  422. 3.422.
    D.-S. Lim, D.-H. You, H.-J. Choi, S.-H. Lim, H. Jang: Effect of CNT distribution on tribological behavior of alumina-CNT composites, Wear 259, 539–544 (2005)CrossRefGoogle Scholar
  423. 3.423.
    Z.H. Xia, J. Lou, W.A. Curtin: A multiscale experiment on the tribological of aligned carbon nanotube/ceramic composites, Scr. Mater. 58, 223–226 (2008)CrossRefGoogle Scholar
  424. 3.424.
    G.-D. Zhan, J.D. Kuntz, H. Wang, C.-M. Wang, A.K. Mukherjee: Anisotropic thermal properties of single-wall-carbon-nanotube-reinforced nanoceramics, Philos. Mag. Lett. 84, 419–423 (2004)CrossRefGoogle Scholar
  425. 3.425.
    Q. Huang, L. Gao, Y. Liu, J. Sun: Sintering and thermal properties of multiwalled carbon nanotube-BaTiO3 composites, J. Mater. Chem. 15, 1995–2001 (2005)CrossRefGoogle Scholar
  426. 3.426.
    G.-D. Zhan, J.D. Kuntz, J.E. Garay, A.K. Mukherjee: Electrical properties of nanoceramics reinforced with ropes of single-walled carbon nanotubes, Appl. Phys. Lett. 83, 1228–1230 (2003)CrossRefGoogle Scholar
  427. 3.427.
    S. Rul, F. Lefevre-Schlick, E. Capria, C. Laurent, A. Peigney: Percolation of single-walled carbon nanotubes in ceramic matrix nanocomposites, Acta Mater. 52, 1061–1067 (2004)CrossRefGoogle Scholar
  428. 3.428.
    S.-L. Shi, J. Liang: Electronic transport properties of multiwall carbon nanotubes/yttria-stabilized zirconia composites, J. Appl. Phys. 101, 023708–5 (2007)CrossRefGoogle Scholar
  429. 3.429.
    A. Peigney, E. Flahaut, C. Laurent, F. Chastel, A. Rousset: Aligned carbon nanotubes in ceramic-matrix nanocomposites prepared by high-temperature extrusion, Chem. Phys. Lett. 352, 20–25 (2002)CrossRefGoogle Scholar
  430. 3.430.
    G.-D. Zhan, J.D. Kuntz, A.K. Mukherjee, P. Zhu, K. Koumoto: Thermoelectric properties of carbon nanotube/ceramic nanocomposites, Scr. Mater. 54, 77–82 (2006)CrossRefGoogle Scholar
  431. 3.431.
    P.M. Ajayan, O. Stephan, C. Colliex, D. Trauth: Aligned carbon nanotube arrays formed by cutting a polymer resin-nanotube composite, Science 265, 1212–1214 (1994)CrossRefGoogle Scholar
  432. 3.432.
    J.N. Coleman, U. Khan, Y.K. Gunʼko: Mechanical reinforcement of polymers using carbon nanotubes, Adv. Mater. 18, 689–706 (2006)CrossRefGoogle Scholar
  433. 3.433.
    R. Haggenmueller, H.H. Gommans, A.G. Rinzler, J.E. Fischer, K.I. Winey: Aligned single-wall carbon nanotubes in composites by melt processing methods, Chem. Phys. Lett. 330, 219–225 (2000)CrossRefGoogle Scholar
  434. 3.434.
    L.S. Schadler, S.C. Giannaris, P.M. Ajayan: Load transfer in carbon nanotube epoxy composites, Appl. Phys. Lett. 73, 3842–3844 (1998)CrossRefGoogle Scholar
  435. 3.435.
    S.J.V. Frankland, A. Caglar, D.W. Brenner, M. Griebel: Molecular simulation of the influence of chemical cross-links on the shear strength of carbon nanotube-polymer interfaces, J. Phys. Chem. B 106, 3046–3048 (2002)CrossRefGoogle Scholar
  436. 3.436.
    H.D. Wagner: Nanotube-polymer adhesion: A mechanics approach, Chem. Phys. Lett. 361, 57–61 (2002)CrossRefGoogle Scholar
  437. 3.437.
    P.M. Ajayan, L.S. Schadler, C. Giannaris, A. Rubio: Single-walled carbon nanotube-polymer composites: Strength and weakness, Adv. Mater. 12, 750–753 (2000)CrossRefGoogle Scholar
  438. 3.438.
    X. Gong, J. Liu, S. Baskaran, R.D. Voise, J.S. Young: Surfactant-assisted processing of carbon nanotube/polymer composites, Chem. Mater. 12, 1049–1052 (2000)CrossRefGoogle Scholar
  439. 3.439.
    E.T. Thostenson, W.Z. Li, D.Z. Wang, Z.F. Ren, T.W. Chou: Carbon nanotube/carbon fiber hybrid multiscale composites, J. Appl. Phys. 91, 6034–6037 (2002)CrossRefGoogle Scholar
  440. 3.440.
    F.H. Gojny, M.H.G. Wichmann, U. Kopke, B. Fiedler, K. Schulte: Carbon nanotube-reinforced epoxy-composites: enhanced stiffness and fracture toughness at low nanotube content, Compos. Sci. Technol. 64, 2363–2371 (2004)CrossRefGoogle Scholar
  441. 3.441.
    F.H. Gojny, M.H.G. Wichmann, B. Fiedler, K. Schulte: Influence of different carbon nanotubes on the mechanical properties of epoxy matrix composites – A comparative study, Compos. Sci. Tech. 65, 2300–2313 (2005)CrossRefGoogle Scholar
  442. 3.442.
    H. Rajoria, N. Jalili: Passive vibration damping enhancement using carbon nanotube-epoxy reinforced composites, Compos. Sci. Tech. 65, 2079–2093 (2005)CrossRefGoogle Scholar
  443. 3.443.
    M.J. Biercuk, M.C. Llaguno, M. Radosavljevic, J.K. Hyun, A.T. Johnson, J.E. Fischer: Carbon nanotube composites for thermal management, Appl. Phys. Lett. 80, 2767–2769 (2002)CrossRefGoogle Scholar
  444. 3.444.
    F.H. Gojny, K. Schulte: Functionalisation effect on the thermo-mechanical behaviour of multi-wall carbon nanotube/epoxy-composites, Compos. Sci. Technol. 64, 2303–2308 (2004)CrossRefGoogle Scholar
  445. 3.445.
    G. Pecastaings, P. Delhaes, A. Derre, H. Saadaoui, F. Carmona, S. Cui: Role of interfacial effects in carbon nanotube/epoxy nanocomposite behavior, J. Nanosci. Nanotechnol. 4, 838–843 (2004)CrossRefGoogle Scholar
  446. 3.446.
    S. Barrau, P. Demont, A. Peigney, C. Laurent, C. Lacabanne: Effect of palmitic acid on the electrical conductivity of carbon nanotubes-polyepoxy composite, Macromolecules 36, 9678–9680 (2003)CrossRefGoogle Scholar
  447. 3.447.
    S. Barrau, P. Demont, A. Peigney, C. Laurent, C. Lacabanne: DC and AC conductivity of carbon nanotubes-polyepoxy composites, Macromolecules 36, 5187–5194 (2003)CrossRefGoogle Scholar
  448. 3.448.
    J. Sandler, M.S.P. Shaffer, T. Prasse, W. Bauhofer, K. Schulte, A.H. Windle: Development of a dispersion process for carbon nanotubes in an epoxy matrix and the resulting electrical properties, Polymer 40, 5967–5971 (1999)CrossRefGoogle Scholar
  449. 3.449.
    Z. Jin, K.P. Pramoda, G. Xu, S.H. Goh: Dynamic mechanical behavior of melt-processed multi-walled carbon nanotube/poly(methyl methacrylate) composites, Chem. Phys. Lett. 337, 43–47 (2001)CrossRefGoogle Scholar
  450. 3.450.
    Z. Jin, K.P. Pramoda, S.H. Goh, G. Xu: Poly(vinylidene fluoride)-assisted melt-blending of multi-walled carbon nanotube/poly(methyl methacrylate) composites, Mater. Res. Bull. 37, 271–278 (2002)CrossRefGoogle Scholar
  451. 3.451.
    C.A. Cooper, D. Ravich, D. Lips, J. Mayer, H.D. Wagner: Distribution and alignment of carbon nanotubes and nanofibrils in a polymer matrix, Compos. Sci. Technol. 62, 1105–1112 (2002)CrossRefGoogle Scholar
  452. 3.452.
    J.M. Benoit, B. Corraze, S. Lefrant, W.J. Blau, P. Bernier, O. Chauvet: Transport properties of PMMA-carbon nanotubes composites, Synth. Met. 121, 1215–1216 (2001)CrossRefGoogle Scholar
  453. 3.453.
    J.M. Benoit, B. Corraze, O. Chauvet: Localization, Coulomb interactions, and electrical heating in single-wall carbon nanotubes/polymer composites, Phys. Rev. B 65, 241405/1–241405/4 (2002)CrossRefGoogle Scholar
  454. 3.454.
    F. Du, R.C. Scogna, W. Zhou, S. Brand, J.E. Fischer, K.I. Winey: Nanotube networks in polymer nanocomposites: Rheology and electrical conductivity, Macromolecules 37, 9048–9055 (2004)CrossRefGoogle Scholar
  455. 3.455.
    T. Kashiwagi, F. Du, K.I. Winey, K.M. Groth, J.R. Shields, R.H. Harris Jr., J.F. Douglas: Flammability properties of PMMA-single walled carbon nanotube nanocomposites, Polym. Mater. Sci. Eng. 91, 90–91 (2004)Google Scholar
  456. 3.456.
    B. Vigolo, A. Pénicaud, C. Coulon, C. Sauder, R. Pailler, C. Journet, P. Bernier, P. Poulin: Macroscopic fibers and ribbons of oriented carbon nanotubes, Science 290, 1331–1334 (2000)CrossRefGoogle Scholar
  457. 3.457.
    B. Vigolo, P. Poulin, M. Lucas, P. Launois, P. Bernier: Improved structure and properties of single-wall carbon nanotube spun fibers, Appl. Phys. Lett. 11, 1210–1212 (2002)CrossRefGoogle Scholar
  458. 3.458.
    P. Poulin, B. Vigolo, P. Launois: Films and fibers of oriented single wall nanotubes, Carbon 40, 1741–1749 (2002)CrossRefGoogle Scholar
  459. 3.459.
    K. Jiang, Q. Li, S. Fan: Spinning continuous carbon nanotube yarn, Nature 419, 801 (2002)CrossRefGoogle Scholar
  460. 3.460.
    M. Zhang, K.R. Atkinson, R.H. Baughman: Multifunctional carbon nanotube yarns by downsizing an ancient technology, Science 306, 1356–1361 (2004)Google Scholar
  461. 3.461.
    J. Steinmetz, M. Glerup, M. Paillet, P. Bernier, M. Holzinger: Production of pure nanotube fibers using a modified wet-spinning method, Carbon 43, 2397–2400 (2005)CrossRefGoogle Scholar
  462. 3.462.
    A.B. Dalton, S. Collins, E. Munoz, J.M. Razal, V.H. Ebron, J.P. Ferraris, J.N. Coleman, B.G. Kim, R.H. Baughman: Super-tough carbon-nanotube fibers, Nature 423, 703 (2003)CrossRefGoogle Scholar
  463. 3.463.
    M.S.P. Shaffer, A.H. Windle: Fabrication and characterization of carbon nanotube/poly(vinyl alcohol) composites, Adv. Mater. 11, 937–941 (1999)CrossRefGoogle Scholar
  464. 3.464.
    L. Jin, C. Bower, O. Zhou: Alignment of carbon nanotubes in a polymer matrix by mechanical stretching, Appl. Phys. Lett. 73, 1197–1199 (1998)CrossRefGoogle Scholar
  465. 3.465.
    H.D. Wagner, O. Lourie, Y. Feldman, R. Tenne: Stress-induced fragmentation of multiwall carbon nanotubes in a polymer matrix, Appl. Phys. Lett. 72, 188–190 (1998)CrossRefGoogle Scholar
  466. 3.466.
    H.D. Wagner, O. Lourie, X.F. Zhou: Macrofragmentation and microfragmentation phenomena in composite materials, Compos. Part A 30, 59–66 (1998)CrossRefGoogle Scholar
  467. 3.467.
    J.R. Wood, Q. Zhao, H.D. Wagner: Orientation of carbon nanotubes in polymers and its detection by Raman spectroscopy, Compos. Part A 32, 391–399 (2001)CrossRefGoogle Scholar
  468. 3.468.
    Q. Zhao, J.R. Wood, H.D. Wagner: Using carbon nanotubes to detect polymer transitions, J. Polym. Sci. B 39, 1492–1495 (2001)CrossRefGoogle Scholar
  469. 3.469.
    M. Cochet, W.K. Maser, A.M. Benito, M.A. Callejas, M.T. Martinesz, J.M. Benoit, J. Schreiber, O. Chauvet: Synthesis of a new polyaniline/nanotube composite: In-situ polymerisation and charge transfer through site-selective interaction, Chem. Commun., 1450–1451 (2001)Google Scholar
  470. 3.470.
    D. Qian, E.C. Dickey, R. Andrews, T. Rantell: Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites, Appl. Phys. Lett. 76, 2868–2870 (2000)CrossRefGoogle Scholar
  471. 3.471.
    V. Datsyuk, C. Guerret-Piecourt, S. Dagreou, L. Billon, J.-C. Dupin, E. Flahaut, A. Peigney, C. Laurent: Double walled carbon nanotube/polymer composites via in-situ nitroxide mediated polymerisation of amphiphilic block copolymers, Carbon 43, 873–876 (2005)CrossRefGoogle Scholar
  472. 3.472.
    R. Blake, Y.K. Gunʼko, J. Coleman, M. Cadek, A. Fonseca, J.B. Nagy, W.J. Blau: A generic organometallic approach toward ultra-strong carbon nanotube polymer composites, J. Am. Chem. Soc. 126, 10226–10227 (2004)CrossRefGoogle Scholar
  473. 3.473.
    T. Kashiwagi, E. Grulke, J. Hilding, K. Groth, R. Harris, K. Butler, J. Shields, S. Kharchenko, J. Douglas: Thermal and flammability properties of polypropylene/carbon nanotube nanocomposites, Polymer 45, 4227–4239 (2004)CrossRefGoogle Scholar
  474. 3.474.
    C. Wei, D. Srivastava, K. Cho: Thermal expansion and diffusion coefficients of carbon nanotube-polymer composites, Los Alamos Nat. Lab., Preprint Archive, Condensed Matter (archiv:cond-mat/0203349), 1–11 (2002)Google Scholar
  475. 3.475.
    J.C. Grunlan, M.V. Bannon, A.R. Mehrabi: Latex-based, single-walled nanotube composites: processing and electrical conductivity, Polym. Prepr. 45, 154–155 (2004)Google Scholar
  476. 3.476.
    J.C. Grunlan, A.R. Mehrabi, M.V. Bannon, J.L. Bahr: Water-based single-walled-nanotube-filled polymer composite with an exceptionally low percolation threshold, Adv. Mater. (Weinheim) 16, 150–153 (2004)CrossRefGoogle Scholar
  477. 3.477.
    C. Pirlot, I. Willems, A. Fonseca, J.B. Nagy, J. Delhalle: Preparation and characterization of carbon nanotube/polyacrylonitrile composites, Adv. Eng. Mater. 4, 109–114 (2002)CrossRefGoogle Scholar
  478. 3.478.
    H. Lam, H. Ye, Y. Gogotsi, F. Ko: Structure and properties of electrospun single-walled carbon nanotubes reinforced nanocomposite fibrils by co-electrospinning, Polym. Prepr. 45, 124–125 (2004)Google Scholar
  479. 3.479.
    L. Cao, H. Chen, M. Wang, J. Sun, X. Zhang, F. Kong: Photoconductivity study of modified carbon nanotube/oxotitanium phthalocyanine composites, J. Phys. Chem. B 106, 8971–8975 (2002)CrossRefGoogle Scholar
  480. 3.480.
    I. Musa, M. Baxendale, G.A.J. Amaratunga, W. Eccleston: Properties of regular poly(3-octylthiophene)/multi-wall carbon nanotube composites, Synth. Met. 102, 1250 (1999)CrossRefGoogle Scholar
  481. 3.481.
    E. Kymakis, I. Alexandou, G.A.J. Amaratunga: Single-walled carbon nanotube-polymer composites: Electrical, optical and structural investigation, Synth. Met. 127, 59–62 (2002)CrossRefGoogle Scholar
  482. 3.482.
    K. Yoshino, H. Kajii, H. Araki, T. Sonoda, H. Take, S. Lee: Electrical and optical properties of conducting polymer-fullerene and conducting polymer-carbon nanotube composites, Fuller. Sci. Technol. 7, 695–711 (1999)CrossRefGoogle Scholar
  483. 3.483.
    S.A. Curran, P.M. Ajayan, W.J. Blau, D.L. Carroll, J.N. Coleman, A.B. Dalton, A.P. Davey, A. Drury, B. McCarthy, S. Maier, A. Strevens: A composite from poly(m-phenylenevinylene-co-2,5-dioctoxy-p-phenylenevinylene) and carbon nanotubes. A novel material for molecular optoelectronics, Adv. Mater. 10, 1091–1093 (1998)CrossRefGoogle Scholar
  484. 3.484.
    P. Fournet, D.F. OʼBrien, J.N. Coleman, H.H. Horhold, W.J. Blau: A carbon nanotube composite as an electron transport layer for M3EH-PPV based light-emitting diodes, Synth. Met. 121, 1683–1684 (2001)CrossRefGoogle Scholar
  485. 3.485.
    H.S. Woo, R. Czerw, S. Webster, D.L. Carroll, J. Ballato, A.E. Strevens, D. OʼBrien, W.J. Blau: Hole blocking in carbon nanotube-polymer composite organic light-emitting diodes based on poly(m-phenylene vinylene-co-2,5-dioctoxy-p-phenylene vinylene), Appl. Phys. Lett. 77, 1393–1395 (2000)CrossRefGoogle Scholar
  486. 3.486.
    H.S. Woo, R. Czerw, S. Webster, D.L. Carroll, J.W. Park, J.H. Lee: Organic light emitting diodes fabricated with single wall carbon nanotubes dispersed in a hole conducting buffer: The role of carbon nanotubes in a hole conducting polymer, Synth. Met. 116, 369–372 (2001)CrossRefGoogle Scholar
  487. 3.487.
    H. Ago, K. Petritsch, M.S.P. Shaffer, A.H. Windle, R.H. Friend: Composites of carbon nanotubes and conjugated polymers for photovoltaic devices, Adv. Mater. 11, 1281–1285 (1999)CrossRefGoogle Scholar
  488. 3.488.
    B. Maruyama, K. Alam: Carbon nanotubes and nanofibers in composite materials, SAMPE Journal 38, 59–70 (2002)Google Scholar
  489. 3.489.
    P. Lambin, A. Fonseca, J.P. Vigneron, J. BʼNagy, A.A. Lucas: Structural and electronic properties of bent carbon nanotubes, Chem. Phys. Lett. 245, 85–89 (1995)CrossRefGoogle Scholar
  490. 3.490.
    L. Chico, V.H. Crespi, L.X. Benedict, S.G. Louie, M.L. Cohen: Pure carbon nanoscale devices: Nanotube heterojunctions, Phys. Rev. Lett. 76, 971–974 (1996)CrossRefGoogle Scholar
  491. 3.491.
    Z. Yao, H.W.C. Postma, L. Balents, C. Dekker: Carbon nanotube intramolecular junctions, Nature 402, 273–276 (1999)CrossRefGoogle Scholar
  492. 3.492.
    S.J. Tans, A.R.M. Verschueren, C. Dekker: Room temperature transistor based on single carbon nanotube, Nature 393, 49–52 (1998)CrossRefGoogle Scholar
  493. 3.493.
    R. Martel, T. Schmidt, H.R. Shea, T. Hertel, P. Avouris: Single and multi-wall carbon nanotube field effect transistors, Appl. Phys. Lett. 73, 2447–2449 (1998)CrossRefGoogle Scholar
  494. 3.494.
    V. Derycke, R. Martel, J. Appenzeller, P. Avouris: Carbon nanotube inter- and intramolecular logic gates, Nano Lett. 1, 453–456 (2001)CrossRefGoogle Scholar
  495. 3.495.
    P. Kim, C.M. Lieber: Nanotube nanotweezers, Science 286, 2148–2150 (1999)CrossRefGoogle Scholar
  496. 3.496.
    P.G. Collins, M.S. Arnold, P. Avouris: Engineering carbon nanotubes using electrical breakdown, Science 292, 706–709 (2001)CrossRefGoogle Scholar
  497. 3.497.
    A.P. Graham, G.S. Duesberg, W. Hoenlein, F. Kreupl, M. Liebau, R. Martin, B. Rajasekharan, W. Pamler, R. Seidel, W. Steinhoegl, E. Unger: How do carbon nanotubes fit into the semiconductor roadmap?, Appl. Phys. A 80, 1141–1151 (2005)CrossRefGoogle Scholar
  498. 3.498.
    R.H. Baughman, C. Changxing, A.A. Zakhidov, Z. Iqbal, J.N. Barisci, G.M. Spinks, G.G. Wallace, A. Mazzoldi, D. de Rossi, A.G. Rinzler, O. Jaschinki, S. Roth, M. Kertesz: Carbon nanotubes actuators, Science 284, 1340–1344 (1999)CrossRefGoogle Scholar
  499. 3.499.
    Y. Gao, Y. Bando: Carbon nanothermometer containing gallium, Nature 415, 599 (2002)CrossRefGoogle Scholar
  500. 3.500.
    C. Niu, E.K. Sichel, R. Hoch, D. Moy, H. Tennent: High power electro-chemical capacitors based on carbon nanotube electrodes, Appl. Phys. Lett. 70, 1480–1482 (1997)CrossRefGoogle Scholar
  501. 3.501.
    E. Frackowiak, F. Béguin: Electrochemical storage of energy in carbon nanotubes and nanostructured carbons, Carbon 40, 1775–1787 (2002)CrossRefGoogle Scholar
  502. 3.502.
    C. Portet, P.L. Taberna, P. Simon, E. Flahaut: Influence of carbon nanotubes addition on carbon–carbon supercapacitor performances in organic electrolyte, J. Power. Sources 139, 371–378 (2005)CrossRefGoogle Scholar
  503. 3.503.
    E. Frackowiak, K. Jurewicz, K. Szostak, S. Delpeux, F. Béguin: Nanotubular materials as electrodes for supercapacitors, Fuel Process. Technol. 77, 213–219 (2002)CrossRefGoogle Scholar
  504. 3.504.
    G. Lota, E. Frackowiak, J. Mittal, M. Monthioux: High performance supercapacitor from chromium oxide-nanotubes based electrodes, Chem. Phys. Lett. 434, 73–77 (2007)CrossRefGoogle Scholar
  505. 3.505.
    R. Hurt, M. Monthioux, A. Kane (Eds.): Toxicology of carbon nanomaterials, Carbon 44(6), 1028–1033 (2006), Special issueGoogle Scholar
  506. 3.506.
    C. Salvador-Morales, E. Flahaut, E. Sim, J. Sloan, M.L.H. Green, R.B. Sim: Complement activation and protein adsorption by carbon nanotubes, Mol. Immun. 43, 193–201 (2006)CrossRefGoogle Scholar
  507. 3.507.
    C. Salvador-Morales, P. Townsend, E. Flahaut, C. Vénien-Bryan, A. Vlandas, M.L.H. Green, R.B. Sim: Binding of pulmonary surfactant proteins to carbon nanotubes; potential for damage to lung immune defence mechanisms, Carbon 45, 607–617 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Carbones et Matériaux Carbonés, Carbons and Carbon-Containing MaterialsCEMES - UPR A-8011 CNRSToulouseFrance
  2. 2.Laboratoire de Chimie de Coordination (LCC)Ecole Nationale Supérieure dʼIngénieurs en Arts Chimiques et TechnologiquesToulouseFrance
  3. 3.CIRIMAT, Centre Interuniversitaire de Recherche et dʼIngénierie des Matériaux, UMR 5085 CNRSUniversité Paul SabatierToulouseFrance
  4. 4.Centre de Physique des Plasmas et leurs Applications (CPPAT)University of Toulouse III (Paul Sabatier)ToulouseFrance
  5. 5.CIRIMAT UMR 5085 CNRSUniversité Paul SabatierToulouseFrance
  6. 6.Centre Inter-universitaire de Recherche sur lʼIndustrialisation des Matériaux (CIRIMAT)ToulouseFrance
  7. 7.Laboratoire de Physique des Solides (LPST), UMR 5477 CNRSUniversity of Toulouse III (Paul Sabatier)ToulouseFrance
  8. 8.Laboratoire National des Champs Magnétiques Pulsés (LNCMP)Institut National des Sciences Appliquées of ToulouseToulouseFrance

Personalised recommendations