Scanning Probe Microscopy – Principle of Operation, Instrumentation, and Probes

  • Bharat BhushanEmail author
  • Othmar MartiEmail author
Part of the Springer Handbooks book series (SHB)


Since the introduction of the STM in 1981 and the AFM in 1985, many variations of probe-based microscopies, referred to as SPMs, have been developed. While the pure imaging capabilities of SPM techniques initially dominated applications of these methods, the physics of probe–sample interactions and quantitative analyses of tribological, electronic, magnetic, biological, and chemical surfaces using SPMs have become of increasing interest in recent years. SPMs are often associated with nanoscale science and technology, since they allow investigation and manipulation of surfaces down to the atomic scale. As our understanding of the underlying interaction mechanisms has grown, SPMs have increasingly found application in many fields beyond basic research fields. In addition, various derivatives of all these methods have been developed for special applications, some of them intended for areas other than microscopy.

This chapter presents an overview of STM and AFM and various probes (tips) used in these instruments, followed by details on AFM instrumentation and analyses.





amorphous carbon


atomic force acoustic microscopy


atomic force microscope


atomic force microscopy


amplitude modulation


controlled geometry


chemical vapor deposition


digital signal processor


field-effect transistor


friction force microscope


friction force microscopy


focused ion beam


frequency modulation


highly oriented pyrolytic


lateral force microscope


lateral force microscopy


linear variable differential transformer


magnetic field microscopy


magnetic force microscope


magnetic force microscopy


multiwall nanotube


plasma-enhanced chemical vapor deposition


position-sensitive detector


position-sensitive diode


power-spectral density


lead zirconate titanate


scanning capacitance microscopy


scanning chemical potential microscopy


scanning electrostatic force microscopy


scanning electron microscope


scanning electron microscopy


scanning electrochemical microscopy


scanning force acoustic microscopy


scanning force microscope


scanning force microscopy


scanning ion conductance microscopy


scanning Kelvin probe microscopy


scanning magnetic microscopy


scanning near field optical microscopy


scanning probe microscope


scanning probe microscopy


scanning tunneling microscope


scanning tunneling microscopy


scanning thermal microscope


single wall nanotube


single-wall nanotube


transmission electron microscope


transmission electron microscopy


tapping mode etched silicon probe


ultrahigh vacuum


  1. 21.1.
    G. Binnig, H. Rohrer, C. Gerber, E. Weibel: Surface studies by scanning tunneling microscopy, Phys. Rev. Lett. 49, 57–61 (1982)Google Scholar
  2. 21.2.
    G. Binnig, C.F. Quate, C. Gerber: Atomic force microscope, Phys. Rev. Lett. 56, 930–933 (1986)Google Scholar
  3. 21.3.
    G. Binnig, C. Gerber, E. Stoll, T.R. Albrecht, C.F. Quate: Atomic resolution with atomic force microscope, Europhys. Lett. 3, 1281–1286 (1987)Google Scholar
  4. 21.4.
    B. Bhushan: Handbook of Micro-/Nanotribology, 2nd edn. (CRC, Boca Raton 1999)Google Scholar
  5. 21.5.
    C.M. Mate, G.M. McClelland, R. Erlandsson, S. Chiang: Atomic-scale friction of a tungsten tip on a graphite surface, Phys. Rev. Lett. 59, 1942–1945 (1987)Google Scholar
  6. 21.6.
    R. Erlandsson, G.M. McClelland, C.M. Mate, S. Chiang: Atomic force microscopy using optical interferometry, J. Vac. Sci. Technol. A 6, 266–270 (1988)Google Scholar
  7. 21.7.
    O. Marti, J. Colchero, J. Mlynek: Combined scanning force and friction microscopy of mica, Nanotechnology 1, 141–144 (1990)Google Scholar
  8. 21.8.
    G. Meyer, N.M. Amer: Simultaneous measurement of lateral and normal forces with an optical-beam-deflection atomic force microscope, Appl. Phys. Lett. 57, 2089–2091 (1990)Google Scholar
  9. 21.9.
    B. Bhushan, J. Ruan: Atomic-scale friction measurements using friction force microscopy: Part II – Application to magnetic media, ASME J. Tribol. 116, 389–396 (1994)Google Scholar
  10. 21.10.
    B. Bhushan, V.N. Koinkar, J. Ruan: Microtribology of magnetic media, Proc. Inst. Mech. Eng. Part J 208, 17–29 (1994)Google Scholar
  11. 21.11.
    B. Bhushan, J.N. Israelachvili, U. Landman: Nanotribology: Friction, wear, and lubrication at the atomic scale, Nature 374, 607–616 (1995)Google Scholar
  12. 21.12.
    S. Fujisawa, M. Ohta, T. Konishi, Y. Sugawara, S. Morita: Difference between the forces measured by an optical lever deflection and by an optical interferometer in an atomic force microscope, Rev. Sci. Instrum. 65, 644–647 (1994)Google Scholar
  13. 21.13.
    S. Fujisawa, E. Kishi, Y. Sugawara, S. Morita: Fluctuation in 2-dimensional stick-slip phenomenon observed with 2-dimensional frictional force microscope, Jpn. J. Appl. Phys. 33, 3752–3755 (1994)Google Scholar
  14. 21.14.
    S. Grafstrom, J. Ackermann, T. Hagen, R. Neumann, O. Probst: Analysis of lateral force effects on the topography in scanning force microscopy, J. Vac. Sci. Technol. B 12, 1559–1564 (1994)Google Scholar
  15. 21.15.
    R.M. Overney, H. Takano, M. Fujihira, W. Paulus, H. Ringsdorf: Anisotropy in friction and molecular stick-slip motion, Phys. Rev. Lett. 72, 3546–3549 (1994)Google Scholar
  16. 21.16.
    R.J. Warmack, X.Y. Zheng, T. Thundat, D.P. Allison: Friction effects in the deflection of atomic force microscope cantilevers, Rev. Sci. Instrum. 65, 394–399 (1994)Google Scholar
  17. 21.17.
    N.A. Burnham, D.D. Domiguez, R.L. Mowery, R.J. Colton: Probing the surface forces of monolayer films with an atomic force microscope, Phys. Rev. Lett. 64, 1931–1934 (1990)Google Scholar
  18. 21.18.
    N.A. Burham, R.J. Colton, H.M. Pollock: Interpretation issues in force microscopy, J. Vac. Sci. Technol. A 9, 2548–2556 (1991)Google Scholar
  19. 21.19.
    C.D. Frisbie, L.F. Rozsnyai, A. Noy, M.S. Wrighton, C.M. Lieber: Functional group imaging by chemical force microscopy, Science 265, 2071–2074 (1994)Google Scholar
  20. 21.20.
    V.N. Koinkar, B. Bhushan: Microtribological studies of unlubricated and lubricated surfaces using atomic force/friction force microscopy, J. Vac. Sci. Technol. A 14, 2378–2391 (1996)Google Scholar
  21. 21.21.
    V. Scherer, B. Bhushan, U. Rabe, W. Arnold: Local elasticity and lubrication measurements using atomic force and friction force microscopy at ultrasonic frequencies, IEEE Trans. Magn. 33, 4077–4079 (1997)Google Scholar
  22. 21.22.
    V. Scherer, W. Arnold, B. Bhushan: Lateral force microscopy using acoustic friction force microscopy, Surf. Interface Anal. 27, 578–587 (1999)Google Scholar
  23. 21.23.
    B. Bhushan, S. Sundararajan: Micro-/nanoscale friction and wear mechanisms of thin films using atomic force and friction force microscopy, Acta Mater. 46, 3793–3804 (1998)Google Scholar
  24. 21.24.
    U. Krotil, T. Stifter, H. Waschipky, K. Weishaupt, S. Hild, O. Marti: Pulse force mode: A new method for the investigation of surface properties, Surf. Interface Anal. 27, 336–340 (1999)Google Scholar
  25. 21.25.
    B. Bhushan, C. Dandavate: Thin-film friction and adhesion studies using atomic force microscopy, J. Appl. Phys. 87, 1201–1210 (2000)Google Scholar
  26. 21.26.
    B. Bhushan: Micro-/Nanotribology and Its Applications (Kluwer, Dordrecht 1997)Google Scholar
  27. 21.27.
    B. Bhushan: Principles and Applications of Tribology (Wiley, New York 1999)Google Scholar
  28. 21.28.
    B. Bhushan: Modern Tribology Handbook – Vol. 1: Principles of Tribology (CRC, Boca Raton 2001)Google Scholar
  29. 21.29.
    B. Bhushan: Introduction to Tribology (Wiley, New York 2002)Google Scholar
  30. 21.30.
    M. Reinstädtler, U. Rabe, V. Scherer, U. Hartmann, A. Goldade, B. Bhushan, W. Arnold: On the nanoscale measurement of friction using atomic force microscope cantilever torsional resonances, Appl. Phys. Lett. 82, 2604–2606 (2003)Google Scholar
  31. 21.31.
    N.A. Burnham, R.J. Colton: Measuring the nanomechanical properties and surface forces of materials using an atomic force microscope, J. Vac. Sci. Technol. A 7, 2906–2913 (1989)Google Scholar
  32. 21.32.
    P. Maivald, H.J. Butt, S.A.C. Gould, C.B. Prater, B. Drake, J.A. Gurley, V.B. Elings, P.K. Hansma: Using force modulation to image surface elasticities with the atomic force microscope, Nanotechnology 2, 103–106 (1991)Google Scholar
  33. 21.33.
    B. Bhushan, A.V. Kulkarni, W. Bonin, J.T. Wyrobek: Nano/picoindentation measurements using capacitive transducer in atomic force microscopy, Philos. Mag. A 74, 1117–1128 (1996)Google Scholar
  34. 21.34.
    B. Bhushan, V.N. Koinkar: Nanoindentation hardness measurements using atomic force microscopy, Appl. Phys. Lett. 75, 5741–5746 (1994)Google Scholar
  35. 21.35.
    D. DeVecchio, B. Bhushan: Localized surface elasticity measurements using an atomic force microscope, Rev. Sci. Instrum. 68, 4498–4505 (1997)Google Scholar
  36. 21.36.
    S. Amelio, A.V. Goldade, U. Rabe, V. Scherer, B. Bhushan, W. Arnold: Measurements of mechanical properties of ultra-thin diamond-like carbon coatings using atomic force acoustic microscopy, Thin Solid Films 392, 75–84 (2001)Google Scholar
  37. 21.37.
    D.M. Eigler, E.K. Schweizer: Positioning single atoms with a scanning tunnelling microscope, Nature 344, 524–528 (1990)Google Scholar
  38. 21.38.
    A.L. Weisenhorn, J.E. MacDougall, J.A.C. Gould, S.D. Cox, W.S. Wise, J. Massie, P. Maivald, V.B. Elings, G.D. Stucky, P.K. Hansma: Imaging and manipulating of molecules on a zeolite surface with an atomic force microscope, Science 247, 1330–1333 (1990)Google Scholar
  39. 21.39.
    I.W. Lyo, P. Avouris: Field-induced nanometer-to-atomic-scale manipulation of silicon surfaces with the STM, Science 253, 173–176 (1991)Google Scholar
  40. 21.40.
    O.M. Leung, M.C. Goh: Orientation ordering of polymers by atomic force microscope tip-surface interactions, Science 225, 64–66 (1992)Google Scholar
  41. 21.41.
    D.W. Abraham, H.J. Mamin, E. Ganz, J. Clark: Surface modification with the scanning tunneling microscope, IBM J. Res. Dev. 30, 492–499 (1986)Google Scholar
  42. 21.42.
    R.M. Silver, E.E. Ehrichs, A.L. de Lozanne: Direct writing of submicron metallic features with a scanning tunnelling microscope, Appl. Phys. Lett. 51, 247–249 (1987)Google Scholar
  43. 21.43.
    A. Kobayashi, F. Grey, R.S. Williams, M. Ano: Formation of nanometer-scale grooves in silicon with a scanning tunneling microscope, Science 259, 1724–1726 (1993)Google Scholar
  44. 21.44.
    B. Parkinson: Layer-by-layer nanometer scale etching of two-dimensional substrates using the scanning tunneling microscopy, J. Am. Chem. Soc. 112, 7498–7502 (1990)Google Scholar
  45. 21.45.
    A. Majumdar, P.I. Oden, J.P. Carrejo, L.A. Nagahara, J.J. Graham, J. Alexander: Nanometer-scale lithography using the atomic force microscope, Appl. Phys. Lett. 61, 2293–2295 (1992)Google Scholar
  46. 21.46.
    B. Bhushan: Micro-/nanotribology and its applications to magnetic storage devices and MEMS, Tribol. Int. 28, 85–96 (1995)Google Scholar
  47. 21.47.
    L. Tsau, D. Wang, K.L. Wang: Nanometer scale patterning of silicon(100) surface by an atomic force microscope operating in air, Appl. Phys. Lett. 64, 2133–2135 (1994)Google Scholar
  48. 21.48.
    E. Delawski, B.A. Parkinson: Layer-by-layer etching of two-dimensional metal chalcogenides with the atomic force microscope, J. Am. Chem. Soc. 114, 1661–1667 (1992)Google Scholar
  49. 21.49.
    B. Bhushan, G.S. Blackman: Atomic force microscopy of magnetic rigid disks and sliders and its applications to tribology, ASME J. Tribol. 113, 452–458 (1991)Google Scholar
  50. 21.50.
    O. Marti, B. Drake, P.K. Hansma: Atomic force microscopy of liquid-covered surfaces: atomic resolution images, Appl. Phys. Lett. 51, 484–486 (1987)Google Scholar
  51. 21.51.
    B. Drake, C.B. Prater, A.L. Weisenhorn, S.A.C. Gould, T.R. Albrecht, C.F. Quate, D.S. Cannell, H.G. Hansma, P.K. Hansma: Imaging crystals, polymers and processes in water with the atomic force microscope, Science 243, 1586–1589 (1989)Google Scholar
  52. 21.52.
    M. Binggeli, R. Christoph, H.E. Hintermann, J. Colchero, O. Marti: Friction force measurements on potential controlled graphite in an electrolytic environment, Nanotechnology 4, 59–63 (1993)Google Scholar
  53. 21.53.
    G. Meyer, N.M. Amer: Novel optical approach to atomic force microscopy, Appl. Phys. Lett. 53, 1045–1047 (1988)Google Scholar
  54. 21.54.
    J.H. Coombs, J.B. Pethica: Properties of vacuum tunneling currents: Anomalous barrier heights, IBM J. Res. Dev. 30, 455–459 (1986)Google Scholar
  55. 21.55.
    M.D. Kirk, T. Albrecht, C.F. Quate: Low-temperature atomic force microscopy, Rev. Sci. Instrum. 59, 833–835 (1988)Google Scholar
  56. 21.56.
    F.J. Giessibl, C. Gerber, G. Binnig: A low-temperature atomic force/scanning tunneling microscope for ultrahigh vacuum, J. Vac. Sci. Technol. B 9, 984–988 (1991)Google Scholar
  57. 21.57.
    T.R. Albrecht, P. Grutter, D. Rugar, D.P.E. Smith: Low temperature force microscope with all-fiber interferometer, Ultramicroscopy 42–44, 1638–1646 (1992)Google Scholar
  58. 21.58.
    H.J. Hug, A. Moser, T. Jung, O. Fritz, A. Wadas, I. Parashikor, H.J. Güntherodt: Low temperature magnetic force microscopy, Rev. Sci. Instrum. 64, 2920–2925 (1993)Google Scholar
  59. 21.59.
    C. Basire, D.A. Ivanov: Evolution of the lamellar structure during crystallization of a semicrystalline-amorphous polymer blend: Time-resolved hot-stage SPM study, Phys. Rev. Lett. 85, 5587–5590 (2000)Google Scholar
  60. 21.60.
    H. Liu, B. Bhushan: Investigation of nanotribological properties of self-assembled monolayers with alkyl and biphenyl spacer chains, Ultramicroscopy 91, 185–202 (2002)Google Scholar
  61. 21.61.
    J. Foster, J. Frommer: Imaging of liquid crystal using a tunneling microscope, Nature 333, 542–547 (1988)Google Scholar
  62. 21.62.
    D. Smith, H. Horber, C. Gerber, G. Binnig: Smectic liquid crystal monolayers on graphite observed by scanning tunneling microscopy, Science 245, 43–45 (1989)Google Scholar
  63. 21.63.
    D. Smith, J. Horber, G. Binnig, H. Nejoh: Structure, registry and imaging mechanism of alkylcyanobiphenyl molecules by tunnelling microscopy, Nature 344, 641–644 (1990)Google Scholar
  64. 21.64.
    Y. Andoh, S. Oguchi, R. Kaneko, T. Miyamoto: Evaluation of very thin lubricant films, J. Phys. D 25, A71–A75 (1992)Google Scholar
  65. 21.65.
    Y. Martin, C.C. Williams, H.K. Wickramasinghe: Atomic force microscope-force mapping and profiling on a sub 100 Åscale, J. Appl. Phys. 61, 4723–4729 (1987)Google Scholar
  66. 21.66.
    J.E. Stern, B.D. Terris, H.J. Mamin, D. Rugar: Deposition and imaging of localized charge on insulator surfaces using a force microscope, Appl. Phys. Lett. 53, 2717–2719 (1988)Google Scholar
  67. 21.67.
    K. Yamanaka, H. Ogisco, O. Kolosov: Ultrasonic force microscopy for nanometer resolution subsurface imaging, Appl. Phys. Lett. 64, 178–180 (1994)Google Scholar
  68. 21.68.
    K. Yamanaka, E. Tomita: Lateral force modulation atomic force microscope for selective imaging of friction forces, Jpn. J. Appl. Phys. 34, 2879–2882 (1995)Google Scholar
  69. 21.69.
    U. Rabe, K. Janser, W. Arnold: Vibrations of free and surface-coupled atomic force microscope: Theory and experiment, Rev. Sci. Instrum. 67, 3281–3293 (1996)Google Scholar
  70. 21.70.
    Y. Martin, H.K. Wickramasinghe: Magnetic imaging by force microscopy with 1000 Å resolution, Appl. Phys. Lett. 50, 1455–1457 (1987)Google Scholar
  71. 21.71.
    D. Rugar, H.J. Mamin, P. Güthner, S.E. Lambert, J.E. Stern, I. McFadyen, T. Yogi: Magnetic force microscopy – General principles and application to longitudinal recording media, J. Appl. Phys. 63, 1169–1183 (1990)Google Scholar
  72. 21.72.
    C. Schönenberger, S.F. Alvarado: Understanding magnetic force microscopy, Z. Phys. B 80, 373–383 (1990)Google Scholar
  73. 21.73.
    U. Hartmann: Magnetic force microscopy, Annu. Rev. Mater. Sci. 29, 53–87 (1999)Google Scholar
  74. 21.74.
    D.W. Pohl, W. Denk, M. Lanz: Optical stethoscopy-image recording with resolution lambda/20, Appl. Phys. Lett. 44, 651–653 (1984)Google Scholar
  75. 21.75.
    E. Betzig, J.K. Troutman, T.D. Harris, J.S. Weiner, R.L. Kostelak: Breaking the diffraction barrier – optical microscopy on a nanometric scale, Science 251, 1468–1470 (1991)Google Scholar
  76. 21.76.
    E. Betzig, P.L. Finn, J.S. Weiner: Combined shear force and near-field scanning optical microscopy, Appl. Phys. Lett. 60, 2484 (1992)Google Scholar
  77. 21.77.
    P.F. Barbara, D.M. Adams, D.B. OʼConnor: Characterization of organic thin film materials with near-field scanning optical microscopy (NSOM), Annu. Rev. Mater. Sci. 29, 433–469 (1999)Google Scholar
  78. 21.78.
    C.C. Williams, H.K. Wickramasinghe: Scanning thermal profiler, Appl. Phys. Lett. 49, 1587–1589 (1986)Google Scholar
  79. 21.79.
    C.C. Williams, H.K. Wickramasinghe: Microscopy of chemical-potential variations on an atomic scale, Nature 344, 317–319 (1990)Google Scholar
  80. 21.80.
    A. Majumdar: Scanning thermal microscopy, Annu. Rev. Mater. Sci. 29, 505–585 (1999)Google Scholar
  81. 21.81.
    O.E. Husser, D.H. Craston, A.J. Bard: Scanning electrochemical microscopy – High resolution deposition and etching of materials, J. Electrochem. Soc. 136, 3222–3229 (1989)Google Scholar
  82. 21.82.
    Y. Martin, D.W. Abraham, H.K. Wickramasinghe: High-resolution capacitance measurement and potentiometry by force microscopy, Appl. Phys. Lett. 52, 1103–1105 (1988)Google Scholar
  83. 21.83.
    M. Nonnenmacher, M.P. OʼBoyle, H.K. Wickramasinghe: Kelvin probe force microscopy, Appl. Phys. Lett. 58, 2921–2923 (1991)Google Scholar
  84. 21.84.
    J.M.R. Weaver, D.W. Abraham: High resolution atomic force microscopy potentiometry, J. Vac. Sci. Technol. B 9, 1559–1561 (1991)Google Scholar
  85. 21.85.
    D. DeVecchio, B. Bhushan: Use of a nanoscale Kelvin probe for detecting wear precursors, Rev. Sci. Instrum. 69, 3618–3624 (1998)Google Scholar
  86. 21.86.
    B. Bhushan, A.V. Goldade: Measurements and analysis of surface potential change during wear of single-crystal silicon (100) at ultralow loads using Kelvin probe microscopy, Appl. Surf. Sci. 157, 373–381 (2000)Google Scholar
  87. 21.87.
    P.K. Hansma, B. Drake, O. Marti, S.A.C. Gould, C.B. Prater: The scanning ion-conductance microscope, Science 243, 641–643 (1989)Google Scholar
  88. 21.88.
    C.B. Prater, P.K. Hansma, M. Tortonese, C.F. Quate: Improved scanning ion-conductance microscope using microfabricated probes, Rev. Sci. Instrum. 62, 2634–2638 (1991)Google Scholar
  89. 21.89.
    J. Matey, J. Blanc: Scanning capacitance microscopy, J. Appl. Phys. 57, 1437–1444 (1985)Google Scholar
  90. 21.90.
    C.C. Williams: Two-dimensional dopant profiling by scanning capacitance microscopy, Annu. Rev. Mater. Sci. 29, 471–504 (1999)Google Scholar
  91. 21.91.
    D.T. Lee, J.P. Pelz, B. Bhushan: Instrumentation for direct, low frequency scanning capacitance microscopy, and analysis of position dependent stray capacitance, Rev. Sci. Instrum. 73, 3523–3533 (2002)Google Scholar
  92. 21.92.
    P.K. Hansma, J. Tersoff: Scanning tunneling microscopy, J. Appl. Phys. 61, R1–R23 (1987)Google Scholar
  93. 21.93.
    I. Giaever: Energy gap in superconductors measured by electron tunneling, Phys. Rev. Lett. 5, 147–148 (1960)Google Scholar
  94. 21.94.
    D. Sarid, V. Elings: Review of scanning force microscopy, J. Vac. Sci. Technol. B 9, 431–437 (1991)Google Scholar
  95. 21.95.
    U. Durig, O. Zuger, A. Stalder: Interaction force detection in scanning probe microscopy: Methods and applications, J. Appl. Phys. 72, 1778–1797 (1992)Google Scholar
  96. 21.96.
    J. Frommer: Scanning tunneling microscopy and atomic force microscopy in organic chemistry, Angew. Chem. Int. Ed. 31, 1298–1328 (1992)Google Scholar
  97. 21.97.
    H.J. Güntherodt, R. Wiesendanger (Eds.): Scanning Tunneling Microscopy I: General Principles and Applications to Clean and Adsorbate-Covered Surfaces (Springer, Berlin, Heidelberg 1992)Google Scholar
  98. 21.98.
    R. Wiesendanger, H.J. Güntherodt (Eds.): Scanning Tunneling Microscopy II: Further Applications and Related Scanning Techniques (Springer, Berlin, Heidelberg 1992)Google Scholar
  99. 21.99.
    D.A. Bonnell (Ed.): Scanning Tunneling Microscopy and Spectroscopy – Theory, Techniques, and Applications (VCH, New York 1993)Google Scholar
  100. 21.100.
    O. Marti, M. Amrein (Eds.): STM and SFM in Biology (Academic, San Diego 1993)Google Scholar
  101. 21.101.
    J.A. Stroscio, W.J. Kaiser (Eds.): Scanning Tunneling Microscopy (Academic, Boston 1993)Google Scholar
  102. 21.102.
    H.J. Güntherodt, D. Anselmetti, E. Meyer (Eds.): Forces in Scanning Probe Methods (Kluwer, Dordrecht 1995)Google Scholar
  103. 21.103.
    G. Binnig, H. Rohrer: Scanning tunnelling microscopy, Surf. Sci. 126, 236–244 (1983)Google Scholar
  104. 21.104.
    B. Bhushan, J. Ruan, B.K. Gupta: A scanning tunnelling microscopy study of fullerene films, J. Phys. D 26, 1319–1322 (1993)Google Scholar
  105. 21.105.
    R.L. Nicolaides, W.E. Yong, W.F. Packard, H.A. Zhou: Scanning tunneling microscope tip structures, J. Vac. Sci. Technol. A 6, 445–447 (1988)Google Scholar
  106. 21.106.
    J.P. Ibe, P.P. Bey, S.L. Brandon, R.A. Brizzolara, N.A. Burnham, D.P. DiLella, K.P. Lee, C.R.K. Marrian, R.J. Colton: On the electrochemical etching of tips for scanning tunneling microscopy, J. Vac. Sci. Technol. A 8, 3570–3575 (1990)Google Scholar
  107. 21.107.
    R. Kaneko, S. Oguchi: Ion-implanted diamond tip for a scanning tunneling microscope, Jpn. J. Appl. Phys. 28, 1854–1855 (1990)Google Scholar
  108. 21.108.
    F.J. Giessibl: Atomic resolution of the silicon(111)–(7×7) surface by atomic force microscopy, Science 267, 68–71 (1995)Google Scholar
  109. 21.109.
    B. Anczykowski, D. Krüger, K.L. Babcock, H. Fuchs: Basic properties of dynamic force spectroscopy with the scanning force microscope in experiment and simulation, Ultramicroscopy 66, 251–259 (1996)Google Scholar
  110. 21.110.
    T.R. Albrecht, C.F. Quate: Atomic resolution imaging of a nonconductor by atomic force microscopy, J. Appl. Phys. 62, 2599–2602 (1987)Google Scholar
  111. 21.111.
    S. Alexander, L. Hellemans, O. Marti, J. Schneir, V. Elings, P.K. Hansma: An atomic-resolution atomic-force microscope implemented using an optical lever, J. Appl. Phys. 65, 164–167 (1989)Google Scholar
  112. 21.112.
    G. Meyer, N.M. Amer: Optical-beam-deflection atomic force microscopy: The NaCl(001) surface, Appl. Phys. Lett. 56, 2100–2101 (1990)Google Scholar
  113. 21.113.
    A.L. Weisenhorn, M. Egger, F. Ohnesorge, S.A.C. Gould, S.P. Heyn, H.G. Hansma, R.L. Sinsheimer, H.E. Gaub, P.K. Hansma: Molecular resolution images of Langmuir–Blodgett films and DNA by atomic force microscopy, Langmuir 7, 8–12 (1991)Google Scholar
  114. 21.114.
    J. Ruan, B. Bhushan: Atomic-scale and microscale friction of graphite and diamond using friction force microscopy, J. Appl. Phys. 76, 5022–5035 (1994)Google Scholar
  115. 21.115.
    D. Rugar, P.K. Hansma: Atomic force microscopy, Phys. Today 43, 23–30 (1990)Google Scholar
  116. 21.116.
    D. Sarid: Scanning Force Microscopy (Oxford Univ. Press, Oxford 1991)Google Scholar
  117. 21.117.
    G. Binnig: Force microscopy, Ultramicroscopy 42–44, 7–15 (1992)Google Scholar
  118. 21.118.
    E. Meyer: Atomic force microscopy, Surf. Sci. 41, 3–49 (1992)Google Scholar
  119. 21.119.
    H.K. Wickramasinghe: Progress in scanning probe microscopy, Acta Mater. 48, 347–358 (2000)Google Scholar
  120. 21.120.
    A.J. den Boef: The influence of lateral forces in scanning force microscopy, Rev. Sci. Instrum. 62, 88–92 (1991)Google Scholar
  121. 21.121.
    M. Radmacher, R.W. Tillman, M. Fritz, H.E. Gaub: From molecules to cells: Imaging soft samples with the atomic force microscope, Science 257, 1900–1905 (1992)Google Scholar
  122. 21.122.
    F. Ohnesorge, G. Binnig: True atomic resolution by atomic force microscopy through repulsive and attractive forces, Science 260, 1451–1456 (1993)Google Scholar
  123. 21.123.
    G. Neubauer, S.R. Coben, G.M. McClelland, D. Horne, C.M. Mate: Force microscopy with a bidirectional capacitance sensor, Rev. Sci. Instrum. 61, 2296–2308 (1990)Google Scholar
  124. 21.124.
    T. Goddenhenrich, H. Lemke, U. Hartmann, C. Heiden: Force microscope with capacitive displacement detection, J. Vac. Sci. Technol. A 8, 383–387 (1990)Google Scholar
  125. 21.125.
    U. Stahl, C.W. Yuan, A.L. Delozanne, M. Tortonese: Atomic force microscope using piezoresistive cantilevers and combined with a scanning electron microscope, Appl. Phys. Lett. 65, 2878–2880 (1994)Google Scholar
  126. 21.126.
    R. Kassing, E. Oesterschulze: Sensors for scanning probe microscopy. In: Micro-/Nanotribology and Its Applications, ed. by B. Bhushan (Kluwer, Dordrecht 1997) pp. 35–54Google Scholar
  127. 21.127.
    C.M. Mate: Atomic-force-microscope study of polymer lubricants on silicon surfaces, Phys. Rev. Lett. 68, 3323–3326 (1992)Google Scholar
  128. 21.128.
    S.P. Jarvis, A. Oral, T.P. Weihs, J.B. Pethica: A novel force microscope and point contact probe, Rev. Sci. Instrum. 64, 3515–3520 (1993)Google Scholar
  129. 21.129.
    D. Rugar, H.J. Mamin, P. Güthner: Improved fiber-optical interferometer for atomic force microscopy, Appl. Phys. Lett. 55, 2588–2590 (1989)Google Scholar
  130. 21.130.
    C. Schönenberger, S.F. Alvarado: A differential interferometer for force microscopy, Rev. Sci. Instrum. 60, 3131–3135 (1989)Google Scholar
  131. 21.131.
    D. Sarid, D. Iams, V. Weissenberger, L.S. Bell: Compact scanning-force microscope using laser diode, Opt. Lett. 13, 1057–1059 (1988)Google Scholar
  132. 21.132.
    N.W. Ashcroft, N.D. Mermin: Solid State Physics (Holt Reinhart and Winston, New York 1976)Google Scholar
  133. 21.133.
    G. Binnig, D.P.E. Smith: Single-tube three-dimensional scanner for scanning tunneling microscopy, Rev. Sci. Instrum. 57, 1688 (1986)Google Scholar
  134. 21.134.
    S.I. Park, C.F. Quate: Digital filtering of STM images, J. Appl. Phys. 62, 312 (1987)Google Scholar
  135. 21.135.
    J.W. Cooley, J.W. Tukey: An algorithm for machine calculation of complex Fourier series, Math. Comput. 19, 297 (1965)MathSciNetzbMATHGoogle Scholar
  136. 21.136.
    J. Ruan, B. Bhushan: Atomic-scale friction measurements using friction force microscopy: Part I – General principles and new measurement techniques, ASME J. Tribol. 116, 378–388 (1994)Google Scholar
  137. 21.137.
    T.R. Albrecht, S. Akamine, T.E. Carver, C.F. Quate: Microfabrication of cantilever styli for the atomic force microscope, J. Vac. Sci. Technol. A 8, 3386–3396 (1990)Google Scholar
  138. 21.138.
    O. Marti, S. Gould, P.K. Hansma: Control electronics for atomic force microscopy, Rev. Sci. Instrum. 59, 836–839 (1988)Google Scholar
  139. 21.139.
    O. Wolter, T. Bayer, J. Greschner: Micromachined silicon sensors for scanning force microscopy, J. Vac. Sci. Technol. B 9, 1353–1357 (1991)Google Scholar
  140. 21.140.
    E. Meyer, R. Overney, R. Luthi, D. Brodbeck: Friction force microscopy of mixed Langmuir–Blodgett films, Thin Solid Films 220, 132–137 (1992)Google Scholar
  141. 21.141.
    H.J. Dai, J.H. Hafner, A.G. Rinzler, D.T. Colbert, R.E. Smalley: Nanotubes as nanoprobes in scanning probe microscopy, Nature 384, 147–150 (1996)Google Scholar
  142. 21.142.
    J.H. Hafner, C.L. Cheung, A.T. Woolley, C.M. Lieber: Structural and functional imaging with carbon nanotube AFM probes, Prog. Biophys. Mol. Biol. 77, 73–110 (2001)Google Scholar
  143. 21.143.
    G.S. Blackman, C.M. Mate, M.R. Philpott: Interaction forces of a sharp tungsten tip with molecular films on silicon surface, Phys. Rev. Lett. 65, 2270–2273 (1990)Google Scholar
  144. 21.144.
    S.J. OʼShea, M.E. Welland, T. Rayment: Atomic force microscope study of boundary layer lubrication, Appl. Phys. Lett. 61, 2240–2242 (1992)Google Scholar
  145. 21.145.
    J.P. Cleveland, S. Manne, D. Bocek, P.K. Hansma: A nondestructive method for determining the spring constant of cantilevers for scanning force microscopy, Rev. Sci. Instrum. 64, 403–405 (1993)Google Scholar
  146. 21.146.
    D.W. Pohl: Some design criteria in STM, IBM J. Res. Dev. 30, 417 (1986)Google Scholar
  147. 21.147.
    W.T. Thomson, M.D. Dahleh: Theory of Vibration with Applications, 5th edn. (Prentice Hall, Upper Saddle River 1998)Google Scholar
  148. 21.148.
    J. Colchero: Reibungskraftmikroskopie. Ph.D. Thesis (University of Konstanz, Konstanz 1993), in GermanGoogle Scholar
  149. 21.149.
    G.M. McClelland, R. Erlandsson, S. Chiang: Atomic force microscopy: General principles and a new implementation. In: Review of Progress in Quantitative Nondestructive Evaluation, Vol. 6B, ed. by D.O. Thompson, D.E. Chimenti (Plenum, New York 1987) pp. 1307–1314Google Scholar
  150. 21.150.
    Y.R. Shen: The Principles of Nonlinear Optics (Wiley, New York 1984)Google Scholar
  151. 21.151.
    T. Baumeister, S.L. Marks: Standard Handbook for Mechanical Engineers, 7th edn. (McGraw-Hill, New York 1967)Google Scholar
  152. 21.152.
    J. Colchero, O. Marti, H. Bielefeldt, J. Mlynek: Scanning force and friction microscopy, Phys. Status Solidi (a) 131, 73–75 (1991)Google Scholar
  153. 21.153.
    R. Young, J. Ward, F. Scire: Observation of metal-vacuum-metal tunneling, field emission, and the transition region, Phys. Rev. Lett. 27, 922 (1971)Google Scholar
  154. 21.154.
    R. Young, J. Ward, F. Scire: The topographiner: An instrument for measuring surface microtopography, Rev. Sci. Instrum. 43, 999 (1972)Google Scholar
  155. 21.155.
    C. Gerber, O. Marti: Magnetostrictive positioner, IBM Tech. Discl. Bull. 27, 6373 (1985)Google Scholar
  156. 21.156.
    R. Garcìa Cantù, M.A. Huerta Garnica: Long-scan imaging by STM, J. Vac. Sci. Technol. A 8, 354 (1990)Google Scholar
  157. 21.157.
    C.J. Chen: In situ testing and calibration of tube piezoelectric scanners, Ultramicroscopy 42–44, 1653–1658 (1992)Google Scholar
  158. 21.158.
    R.G. Carr: Finite element analysis of PZT tube scanner motion for scanning tunnelling microscopy, J. Microsc. 152, 379–385 (1988)Google Scholar
  159. 21.159.
    C.J. Chen: Electromechanical deflections of piezoelectric tubes with quartered electrodes, Appl. Phys. Lett. 60, 132 (1992)Google Scholar
  160. 21.160.
    N. Libioulle, A. Ronda, M. Taborelli, J.M. Gilles: Deformations and nonlinearity in scanning tunneling microscope images, J. Vac. Sci. Technol. B 9, 655–658 (1991)Google Scholar
  161. 21.161.
    E.P. Stoll: Restoration of STM images distorted by time-dependent piezo driver aftereffects, Ultramicroscopy 42–44, 1585–1589 (1991)Google Scholar
  162. 21.162.
    R. Durselen, U. Grunewald, W. Preuss: Calibration and applications of a high precision piezo scanner for nanometrology, Scanning 17, 91–96 (1995)Google Scholar
  163. 21.163.
    J. Fu: In situ testing and calibrating of Z-piezo of an atomic force microscope, Rev. Sci. Instrum. 66, 3785–3788 (1995)Google Scholar
  164. 21.164.
    R.C. Barrett, C.F. Quate: Optical scan-correction system applied to atomic force microscopy, Rev. Sci. Instrum. 62, 1393 (1991)Google Scholar
  165. 21.165.
    R. Toledo-Crow, P.C. Yang, Y. Chen, M. Vaez-Iravani: Near-field differential scanning optical microscope with atomic force regulation, Appl. Phys. Lett. 60, 2957–2959 (1992)Google Scholar
  166. 21.166.
    J.E. Griffith, G.L. Miller, C.A. Green: A scanning tunneling microscope with a capacitance-based position monitor, J. Vac. Sci. Technol. B 8, 2023–2027 (1990)Google Scholar
  167. 21.167.
    A.E. Holman, C.D. Laman, P.M.L.O. Scholte, W.C. Heerens, F. Tuinstra: A calibrated scanning tunneling microscope equipped with capacitive sensors, Rev. Sci. Instrum. 67, 2274–2280 (1996)Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Nanoprobe Laboratory for Bio- and Nanotechnology and Biomimetics (NLB2)Ohio State UniversityColumbusUSA
  2. 2.Institute of Experimental PhysicsUlm UniversityUlmGermany

Personalised recommendations