Advertisement

Nanomechanical Cantilever Array Sensors

  • Hans Peter Lang
  • Martin Hegner
  • Christoph Gerber
Part of the Springer Handbooks book series (SHB)

Abstract

Microfabricated cantilever sensors have attracted much interest in recent years as devices for the fast and reliable detection of small concentrations of molecules in air and solution. In addition to application of such sensors for gas and chemical-vapor sensing, for example as an artificial nose, they have also been employed to measure physical properties of tiny amounts of materials in miniaturized versions of conventional standard techniques such as calorimetry, thermogravimetry, weighing, photothermal spectroscopy, as well as for monitoring chemical reactions such as catalysis on small surfaces. In the past few years, the cantilever-sensor concept has been extended to biochemical applications and as an analytical device for measurements of biomaterials. Because of the label-free detection principle of cantilever sensors, their small size and scalability, this kind of device is advantageous for diagnostic applications and disease monitoring, as well as for genomics or proteomics purposes. The use of microcantilever arrays enables detection of several analytes simultaneously and solves the inherent problem of thermal drift often present when using single microcantilever sensors, as some of the cantilevers can be used as sensor cantilevers for detection, and other cantilevers serve as passivated reference cantilevers that do not exhibit affinity to the molecules to be detected.

Keywords

Bovine Serum Albumine Cantilever Deflection Pentaerythritol Tetranitrate Cantilever Sensor Cantilever Array 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations

AC

alternating-current

AC

amorphous carbon

AFM

atomic force microscope

AFM

atomic force microscopy

BSA

bovine serum albumin

CIC

cantilever in cantilever

CMOS

complementary metal–oxide–semiconductor

CRP

C-reactive protein

DDT

dichlorodiphenyltrichloroethane

DIMP

diisopropylmethylphosphonate

DMMP

dimethylmethylphosphonate

DNA

deoxyribonucleic acid

DNT

2,4-dinitrotoluene

DOPC

1,2-dioleoyl-sn-glycero-3-phosphocholine

FIP

feline coronavirus

HDT

hexadecanethiol

HF

hydrofluoric

HSA

human serum albumin

ICA

independent component analysis

IR

infrared

LDL

low-density lipoprotein

MC

microcantilever

MC

microcapillary

MRP

molecular recognition phase

PC

polycarbonate

PDMS

polydimethylsiloxane

PEEK

polyetheretherketone

PEG

polyethylene glycol

PEI

polyethyleneimine

PETN

pentaerythritol tetranitrate

PKA

protein kinase

PKI

protein kinase inhibitor

PMAA

poly(methacrylic acid)

PSA

prostate-specific antigen

PSD

position-sensitive detector

PSD

position-sensitive diode

PSD

power-spectral density

PZT

lead zirconate titanate

SAM

scanning acoustic microscopy

SAM

self-assembled monolayer

SARS-CoV

syndrome associated coronavirus

SFM

scanning force microscope

SFM

scanning force microscopy

SOI

silicon-on-insulator

TNT

trinitrotoluene

VCSEL

vertical-cavity surface-emitting laser

VOC

volatile organic compound

a-BSA

anti-bovine serum albumin

oxLDL

oxidized low-density lipoprotein

References

  1. 15.1.
    G. Binnig, C.F. Quate, C. Gerber: Atomic force microscope, Phys. Rev. Lett. 56, 930–933 (1986)CrossRefGoogle Scholar
  2. 15.2.
    R.J. Wilfinger, P.H. Bardell, D.S. Chhabra: The resonistor, a frequency sensitive device utilizing the mechanical resonance of a silicon substrate, IBM J. 12, 113–118 (1968)CrossRefGoogle Scholar
  3. 15.3.
    T.M.S. Heng: Trimming of microstrip circuits utilizing microcantilever air gaps, IEEE Trans. Microw. Theory Technol. 19, 652–654 (1971)CrossRefGoogle Scholar
  4. 15.4.
    K.E. Petersen: Micromechanical membrane switches on silicon, IBM J. Res. Dev. 23, 376–385 (1979)CrossRefGoogle Scholar
  5. 15.5.
    E.S. Kolesar: Electronic nerve agent detector, US Patent 4549427 (1983)Google Scholar
  6. 15.6.
    T. Itoh, T. Suga: Force sensing microcantilever using sputtered zinc-oxide thin-film, Appl. Phys. Lett. 64, 37–39 (1994)CrossRefGoogle Scholar
  7. 15.7.
    J.P. Cleveland, S. Manne, D. Bocek, P.K. Hansma: A nondestructive method for determining the spring constant of cantilevers for scanning force microscopy, Rev. Sci. Instrum. 64, 403–405 (1993)CrossRefGoogle Scholar
  8. 15.8.
    T. Thundat, R.J. Warmack, G.Y. Chen, D.P. Allison: Thermal, ambient-induced deflections of scanning force microscope cantilevers, Appl. Phys. Lett. 64, 2894–2896 (1994)CrossRefGoogle Scholar
  9. 15.9.
    J.K. Gimzewski, C. Gerber, E. Meyer, R.R. Schlittler: Observation of a chemical reaction using a micromechanical sensor, Chem. Phys. Lett. 217, 589–594 (1994)CrossRefGoogle Scholar
  10. 15.10.
    T. Thundat, G.Y. Chen, R.J. Warmack, D.P. Allison, E.A. Wachter: Vapor detection using resonating microcantilevers, Anal. Chem. 67, 519–521 (1995)CrossRefGoogle Scholar
  11. 15.11.
    H.P. Lang, R. Berger, C. Andreoli, J. Brugger, M. Despont, P. Vettiger, C. Gerber, J.K. Gimzewski, J.-P. Ramseyer, E. Meyer, H.-J. Güntherodt: Sequential position readout from arrays of micromechanical cantilever sensors, Appl. Phys. Lett. 72, 383–385 (1998)CrossRefGoogle Scholar
  12. 15.12.
    H. Ibach: Adsorbate-induced surface stress, J. Vac. Sci. Technol. A 12, 2240–2245 (1994)CrossRefGoogle Scholar
  13. 15.13.
    R. Berger, E. Delamarche, H.P. Lang, C. Gerber, J.K. Gimzewski, E. Meyer, H.-J. Güntherodt: Surface stress in the self-assembly of alkanethiols on gold, Science 276, 2021–2024 (1997)CrossRefGoogle Scholar
  14. 15.14.
    J.R. Barnes, R.J. Stephenson, M.E. Welland, C. Gerber, J.K. Gimzewski: Photothermal spectroscopy with femtojoule sensitivity based on micromechanics, Nature 372, 79–81 (1994)CrossRefGoogle Scholar
  15. 15.15.
    G.G. Stoney: The tension of metallic films deposited by electrolysis, Proc. R. Soc. 82, 172–177 (1909)CrossRefGoogle Scholar
  16. 15.16.
    F.J. von Preissig: Applicability of the classical curvature-stress relation for thin films on plate substrates, J. Appl. Phys. 66, 4262–4268 (1989)CrossRefGoogle Scholar
  17. 15.17.
    J. Fritz, M.K. Baller, H.P. Lang, H. Rothuizen, P. Vettiger, E. Meyer, H.-J. Güntherodt, C. Gerber, J.K. Gimzewski: Translating biomolecular recognition into nanomechanics, Science 288, 316–318 (2000)CrossRefGoogle Scholar
  18. 15.18.
    M. Alvarez, L.G. Carrascosa, M. Moreno, A. Calle, A. Zaballos, L.M. Lechuga, C.-A. Martinez, J. Tamayo: Nanomechanics of the formation of DNA self-assembled monolayers, hybridization on microcantilevers, Langmuir 20, 9663–9668 (2004)CrossRefGoogle Scholar
  19. 15.19.
    D. Sarid: Scanning Force Microscopy with Applications to Electric, Magnetic, and Atomic Forces (Oxford Univ. Press, New York 1991)Google Scholar
  20. 15.20.
    R. Berger, H.P. Lang, C. Gerber, J.K. Gimzewski, J.H. Fabian, L. Scandella, E. Meyer, H.-J. Güntherodt: Micromechanical thermogravimetry, Chem. Phys. Lett. 294, 363–369 (1998)CrossRefGoogle Scholar
  21. 15.21.
    J.E. Sader: Frequency response of cantilever beams immersed in viscous fluids with applications to the atomic force microscope, J. Appl. Phys. 84, 64–76 (1998)CrossRefGoogle Scholar
  22. 15.22.
    T. Bachels, F. Tiefenbacher, R. Schafer: Condensation of isolated metal clusters studied with a calorimeter, J. Chem. Phys. 110, 10008–10015 (1999)CrossRefGoogle Scholar
  23. 15.23.
    J.R. Barnes, R.J. Stephenson, C.N. Woodburn, S.J. OʼShea, M.E. Welland, T. Rayment, J.K. Gimzewski, C. Gerber: A femtojoule calorimeter using micromechanical sensors, Rev. Sci. Instrum. 65, 3793–3798 (1994)CrossRefGoogle Scholar
  24. 15.24.
    T.A. Brunt, T. Rayment, S.J. OʼShea, M.E. Welland: Measuring the surface stresses in an electrochemically deposited monolayer: Pb on Au(111), Langmuir 12, 5942–5946 (1996)CrossRefGoogle Scholar
  25. 15.25.
    R. Puers, D. Lapadatu: Electrostatic forces and their effects on capacitive mechanical sensors, Sens. Actuators A 56, 203–210 (1996)CrossRefGoogle Scholar
  26. 15.26.
    J. Fricke, C. Obermaier: Cantilever beam accelerometer based on surface micromachining technology, J. Micromech. Microeng. 3, 190–192 (1993)CrossRefGoogle Scholar
  27. 15.27.
    C. Lee, T. Itoh, T. Ohashi, R. Maeda, T. Suga: Development of a piezoelectric self-excitation, self-detection mechanism in PZT microcantilevers for dynamic scanning force microscopy in liquid, J. Vac. Sci. Technol. B 15, 1559–1563 (1997)CrossRefGoogle Scholar
  28. 15.28.
    T. Göddenhenrich, H. Lemke, U. Hartmann, C. Heiden: Force microscope with capacitive displacement detection, J. Vac. Sci. Technol. A 8, 383–387 (1990)CrossRefGoogle Scholar
  29. 15.29.
    J. Brugger, R.A. Buser, N.F. de Rooij: Micromachined atomic force microprobe with integrated capacitive read-out, J. Micromech. Microeng. 2, 218–220 (1992)CrossRefGoogle Scholar
  30. 15.30.
    C. Schönenberger, S.F. Alvarado: A differential interferometer for force microscopy, Rev. Sci. Instrum. 60, 3131–3134 (1989)CrossRefGoogle Scholar
  31. 15.31.
    M.J. Cunningham, S.T. Cheng, W.W. Clegg: A differential interferometer for scanning force microscopy, Meas. Sci. Technol. 5, 1350–1354 (1994)CrossRefGoogle Scholar
  32. 15.32.
    G. Meyer, N.M. Amer: Novel optical approach to atomic force microscopy, Appl. Phys. Lett. 53, 2400–2402 (1988)CrossRefGoogle Scholar
  33. 15.33.
    R. Berger, C. Gerber, J.K. Gimzewski, E. Meyer, H.-J. Güntherodt: Thermal analysis using a micromechanical calorimeter, Appl. Phys. Lett. 69, 40–42 (1996)CrossRefGoogle Scholar
  34. 15.34.
    L. Scandella, G. Binder, T. Mezzacasa, J. Gobrecht, R. Berger, H.P. Lang, C. Gerber, J.K. Gimzewski, J.H. Koegler, J.C. Jansen: Combination of single crystal zeolites and microfabrication: Two applications towards zeolite nanodevices, Microporous Mesoporous Mater. 21, 403–409 (1998)CrossRefGoogle Scholar
  35. 15.35.
    R. Berger, C. Gerber, H.P. Lang, J.K. Gimzewski: Micromechanics: a toolbox for femtoscale science: towards a laboratory on a tip, Microelectron. Eng. 35, 373–379 (1997)CrossRefGoogle Scholar
  36. 15.36.
    H.P. Lang, R. Berger, F.M. Battiston, J.-P. Ramseyer, E. Meyer, C. Andreoli, J. Brugger, P. Vettiger, M. Despont, T. Mezzacasa, L. Scandella, H.-J. Güntherodt, C. Gerber, J.K. Gimzewski: A chemical sensor based on a micromechanical cantilever array for the identification of gases and vapors, Appl. Phys. A 66, 61–64 (1998)CrossRefGoogle Scholar
  37. 15.37.
    M.K. Baller, H.P. Lang, J. Fritz, C. Gerber, J.K. Gimzewski, U. Drechsler, H. Rothuizen, M. Despont, P. Vettiger, F.M. Battiston, J.-P. Ramseyer, P. Fornaro, E. Meyer, H.-J. Güntherodt: A cantilever array based artificial nose, Ultramicroscopy 82, 1–9 (2000)CrossRefGoogle Scholar
  38. 15.38.
    S. Cesaro-Tadic, G. Dernick, D. Juncker, G. Buurman, H. Kropshofer, B. Michel, C. Fattinger, E. Delamarche: High-sensitivity miniaturized immunoassays for tumor necrosis factor α using microfluidic systems, Lab Chip 4, 563–569 (2004)CrossRefGoogle Scholar
  39. 15.39.
    J. Fritz, M.K. Baller, H.P. Lang, T. Strunz, E. Meyer, H.-J. Güntherodt, E. Delamarche, C. Gerber, J.K. Gimzewski: Stress at the solid-liquid interface of self-assembled monolayers on gold investigated with a nanomechanical sensor, Langmuir 16, 9694–9696 (2000)CrossRefGoogle Scholar
  40. 15.40.
    R. McKendry, J. Zhang, Y. Arntz, T. Strunz, M. Hegner, H.P. Lang, M.K. Baller, U. Certa, E. Meyer, H.-J. Güntherodt, C. Gerber: Multiple label-free biodetection and quantitative DNA-binding assays on a nanomechanical cantilever array, Proc. Natl. Acad. Sci. USA 99, 9783–9787 (2002)CrossRefGoogle Scholar
  41. 15.41.
    Y. Arntz, J.D. Seelig, H.P. Lang, J. Zhang, P. Hunziker, J.-P. Ramseyer, E. Meyer, M. Hegner, C. Gerber: Label-free protein assay based on a nanomechanical cantilever array, Nanotechnology 14, 86–90 (2003)CrossRefGoogle Scholar
  42. 15.42.
    A. Bietsch, M. Hegner, H.P. Lang, C. Gerber: Inkjet deposition of alkanethiolate monolayers and DNA oligonucleotides on gold: Evaluation of spot uniformity by wet etching, Langmuir 20, 5119–5122 (2004)CrossRefGoogle Scholar
  43. 15.43.
    A. Bietsch, J. Zhang, M. Hegner, H.P. Lang, C. Gerber: Rapid functionalization of cantilever array sensors by inkjet printing, Nanotechnology 15, 873–880 (2004)CrossRefGoogle Scholar
  44. 15.44.
    D. Lange, C. Hagleitner, A. Hierlemann, O. Brand, H. Baltes: Complementary metal oxide semiconductor cantilever arrays on a single chip: mass-sensitive detection of volatile organic compounds, Anal. Chem. 74, 3084–3085 (2002)CrossRefGoogle Scholar
  45. 15.45.
    C.A. Savran, T.P. Burg, J. Fritz, S.R. Manalis: Microfabricated mechanical biosensor with inherently differential readout, Appl. Phys. Lett. 83, 1659–1661 (2003)CrossRefGoogle Scholar
  46. 15.46.
    S. Okuyama, Y. Mitobe, K. Okuyama, K. Matsushita: Hydrogen gas sensing using a Pd-coated cantilever, Jpn. J. Appl. Phys. 39, 3584–3590 (2000)CrossRefGoogle Scholar
  47. 15.47.
    A. Fabre, E. Finot, J. Demoment, S. Contreras: Monitoring the chemical changes in Pd induced by hydrogen absorption using microcantilevers, Ultramicroscopy 97, 425–432 (2003)CrossRefGoogle Scholar
  48. 15.48.
    D.R. Baselt, B. Fruhberger, E. Klaassen, S. Cemalovic, C.L. Britton, S.V. Patel, T.E. Mlsna, D. McCorkle, B. Warmack: Design and performance of a microcantilever-based hydrogen sensor, Sens. Actuator. B Chem. 88, 120–131 (2003)CrossRefGoogle Scholar
  49. 15.49.
    Y.-I. Chou, H.-C. Chiang, C.-C. Wang: Study on Pd functionalization of microcantilever for hydrogen detection promotion, Sens. Actuator. B Chem. 129, 72–78 (2008)CrossRefGoogle Scholar
  50. 15.50.
    L. Scandella, G. Binder, T. Mezzacasa, J. Gobrecht, R. Berger, H.P. Lang, C. Gerber, J.K. Gimzewski, J.H. Koegler, J.C. Jansen: Combination of single crystal zeolites and microfabrication: Two applications towards zeolite nanodevices, Microporous Mesoporous Mater. 21, 403–409 (1998)CrossRefGoogle Scholar
  51. 15.51.
    R.L. Gunter, W.D. Delinger, T.L. Porter, R. Stewart, J. Reed: Hydration level monitoring using embedded piezoresistive microcantilever sensors, Med. Eng. Phys. 27, 215–220 (2005)CrossRefGoogle Scholar
  52. 15.52.
    X. Shi, Q. Chen, J. Fang, K. Varahramyan, H.F. Ji: Al2O3-coated microcantilevers for detection of moisture at ppm level, Sens. Actuator. B Chem. 129, 241–245 (2008)CrossRefGoogle Scholar
  53. 15.53.
    J. Zhou, P. Li, S. Zhang, Y.C. Long, F. Zhou, Y.P. Huang, P.Y. Yang, M.H. Bao: Zeolite-modified microcantilever gas sensor for indoor air quality control, Sens. Actuator. B Chem. 94, 337–342 (2003)CrossRefGoogle Scholar
  54. 15.54.
    A. Vidic, D. Then, C. Ziegler: A new cantilever system for gas and liquid sensing, Ultramicroscopy 97, 407–416 (2003)CrossRefGoogle Scholar
  55. 15.55.
    R. Berger, E. Delamarche, H.P. Lang, C. Gerber, J.K. Gimzewski, E. Meyer, H.J. Güntherodt: Surface stress in the self-assembly of alkanethiols on gold probed by a force microscopy technique, Appl. Phys. A 66, S55–S59 (1998)CrossRefGoogle Scholar
  56. 15.56.
    P.G. Datskos, I. Sauers: Detection of 2-mercaptoethanol using gold-coated micromachined cantilevers, Sens. Actuator. B Chem. 61, 75–82 (1999)CrossRefGoogle Scholar
  57. 15.57.
    A.N. Itakura, R. Berger, T. Narushima, M. Kitajima: Low-energy ion-induced tensile stress of self-assembled alkanethiol monolayers, Appl. Phys. Lett. 80, 3712–3714 (2002)CrossRefGoogle Scholar
  58. 15.58.
    M. Godin, P.J. Williams, V. Tabard-Cossa, O. Laroche, L.Y. Beaulieu, R.B. Lennox, P. Grutter: Surface stress, kinetics, and structure of alkanethiol self-assembled monolayers, Langmuir 20, 7090–7096 (2004)CrossRefGoogle Scholar
  59. 15.59.
    R. Desikan, I. Lee, T. Thundat: Effect of nanometer surface morphology on surface stress and adsorption kinetics of alkanethiol self-assembled monolayers, Ultramicroscopy 106, 795–799 (2006)CrossRefGoogle Scholar
  60. 15.60.
    S. Jeon, N. Jung, T. Thundat: Nanomechanics of a self-assembled monolayer on microcantilever sensors measured by a multiple-point deflection technique, Sens. Actuator. B Chem. 122, 365–368 (2007)CrossRefGoogle Scholar
  61. 15.61.
    K. Rijal, R. Mutharasan: Method for measuring the self-assembly of alkanethiols on gold at femtomolar concentrations, Langmuir 23, 6856–6863 (2007)CrossRefGoogle Scholar
  62. 15.62.
    S. Kohale, S.M. Molina, B.L. Weeks, R. Khare, L.J. Hope-Weeks: Monitoring the formation of self-assembled monolayers of alkanedithiols using a micromechanical cantilever sensor, Langmuir 23, 1258–1263 (2007)CrossRefGoogle Scholar
  63. 15.63.
    R. Desikan, S. Armel, H.M. Meyer, T. Thundat: Effect of chain length on nanomechanics of alkanethiol self-assembly, Nanotechnology 18, 424028 (2007)CrossRefGoogle Scholar
  64. 15.64.
    B. Rogers, L. Manning, M. Jones, T. Sulchek, K. Murray, B. Beneschott, J.D. Adams, Z. Hu, T. Thundat, H. Cavazos, S.C. Minne: Mercury vapor detection with a self-sensing, resonating piezoelectric cantilever, Rev. Sci. Instrum. 74, 4899–4901 (2003)CrossRefGoogle Scholar
  65. 15.65.
    H.F. Ji, Y.F. Zhang, V.V. Purushotham, S. Kondu, B. Ramachandran, T. Thundat, D.T. Haynie: 1,6-Hexanedithiol monolayer as a receptor for specific recognition of alkylmercury, Analyst 130, 1577–1579 (2005)CrossRefGoogle Scholar
  66. 15.66.
    A.R. Kadam, G.P. Nordin, M.A. George: Use of thermally induced higher order modes of a microcantilever for mercury vapor detection, J. Appl. Phys. 99, 094905 (2006)CrossRefGoogle Scholar
  67. 15.67.
    A.R. Kadam, G.P. Nordin, M.A. George: Comparison of microcantilever Hg sensing behavior with thermal higher order modes for as-deposited sputtered and thermally evaporated Au films, J. Vac. Sci. Technol. B 24, 2271–2275 (2006)CrossRefGoogle Scholar
  68. 15.68.
    H.F. Ji, E. Finot, R. Dabestani, T. Thundat, G.M. Brown, P.F. Britt: A novel self-assembled monolayer (SAM) coated microcantilever for low level caesium detection, Chem. Commun. 36(6), 457–458 (2000)CrossRefGoogle Scholar
  69. 15.69.
    T.A. Brunt, T. Rayment, S.J. OʼShea, M.E. Welland: Measuring the surface stresses in an electrochemically deposited metal monolayer: Pb on Au(111), Langmuir 12, 5942–5946 (1996)CrossRefGoogle Scholar
  70. 15.70.
    J. Mertens, E. Finot, M.H. Nadal, V. Eyraud, O. Heintz, E. Bourillot: Detection of gas trace of hydrofluoric acid using microcantilever, Sens. Actuator. B Chem. 99, 58–65 (2004)CrossRefGoogle Scholar
  71. 15.71.
    Y.J. Tang, J. Fang, X.H. Xu, H.F. Ji, G.M. Brown, T. Thundat: Detection of femtomolar concentrations of HF using an SiO2 microcantilever, Anal. Chem. 76, 2478–2481 (2004)CrossRefGoogle Scholar
  72. 15.72.
    J. Mertens, E. Finot, O. Heintz, M.-H. Nadal, V. Eyraud, A. Cathelat, G. Legay, E. Bourillot, A. Dereux: Changes in surface stress, morphology and chemical composition of silica and silicon nitride surfaces during the etching by gaseous HF acid, Appl. Surf. Sci. 253, 5101–5108 (2007)CrossRefGoogle Scholar
  73. 15.73.
    T.L. Porter, T.L. Vail, M.P. Eastman, R. Stewart, J. Reed, R. Venedam, W. Delinger: A solid-state sensor platform for the detection of hydrogen cyanide gas, Sens. Actuator. B Chem. 123, 313–317 (2007)CrossRefGoogle Scholar
  74. 15.74.
    H.F. Ji, T. Thundat, R. Dabestani, G.M. Brown, P.F. Britt, P.V. Bonnesen: Ultrasensitive detection of CrO4 2− using a microcantilever sensor, Anal. Chem. 73, 1572–1576 (2001)CrossRefGoogle Scholar
  75. 15.75.
    X.H. Xu, T.G. Thundat, G.M. Brown, H.F. Ji: Detection of Hg2+ using microcantilever sensors, Anal. Chem. 74, 3611–3615 (2002)CrossRefGoogle Scholar
  76. 15.76.
    S. Cherian, A. Mehta, T. Thundat: Investigating the mechanical effects of adsorption of Ca2+ ions on a silicon nitride microcantilever surface, Langmuir 18, 6935–6939 (2002)CrossRefGoogle Scholar
  77. 15.77.
    S. Cherian, R.K. Gupta, B.C. Mullin, T. Thundat: Detection of heavy metal ions using protein-functionalized microcantilever sensors, Biosens. Bioelectron. 19, 411–416 (2003)CrossRefGoogle Scholar
  78. 15.78.
    K. Liu, H.F. Ji: Detection of Pb2+ using a hydrogel swelling microcantilever sensor, Anal. Sci. 20, 9–11 (2004)CrossRefGoogle Scholar
  79. 15.79.
    P. Dutta, P.J. Chapman, P.G. Datskos, M.J. Sepaniak: Characterization of ligand-functionalized microcantilevers for metal ion sensing, Anal. Chem. 77, 6601–6608 (2005)CrossRefGoogle Scholar
  80. 15.80.
    F. Tian, V.I. Boiadjiev, L.A. Pinnaduwage, G.M. Brown, T. Thundat: Selective detection of Cr(VI) using a microcantilever electrode coated with a self-assembled monolayer, J. Vac. Sci. Technol. A 23, 1022–1028 (2005)CrossRefGoogle Scholar
  81. 15.81.
    V.I. Boiadjiev, G.M. Brown, L.A. Pinnaduwage, G. Goretzki, P.V. Bonnesen, T. Thundat: Photochemical hydrosilylation of 11-undecenyltriethylammonium bromide with hydrogen-terminated Si surfaces for the development of robust microcantilever sensors for Cr(VI), Langmuir 21, 1139–1142 (2005)CrossRefGoogle Scholar
  82. 15.82.
    N.A. Carrington, L. Yong, Z.-L. Xue: Electrochemical deposition of sol-gel films for enhanced chromium(VI) determination in aqueous solutions, Anal. Chim. Acta 572, 17–24 (2006)CrossRefGoogle Scholar
  83. 15.83.
    S. Velanki, S. Kelly, T. Thundat, D.A. Blake, H.F. Ji: Detection of Cd(II) using antibody-modified microcantilever sensors, Ultramicroscopy 107, 1123–1128 (2007)CrossRefGoogle Scholar
  84. 15.84.
    H. Jensenius, J. Thaysen, A.A. Rasmussen, L.H. Veje, O. Hansen, A. Boisen: A microcantilever-based alcohol vapor sensor-application and response model, Appl. Phys. Lett. 76, 2815–2817 (2000)CrossRefGoogle Scholar
  85. 15.85.
    A. Hierlemann, D. Lange, C. Hagleitner, N. Kerness, A. Koll, O. Brand, H. Baltes: Application-specific sensor systems based on CMOS chemical microsensors, Sens. Actuator. B Chem. 70, 2–11 (2000)CrossRefGoogle Scholar
  86. 15.86.
    D. Lange, C. Hagleitner, A. Hierlemann, O. Brand, H. Baltes: Complementary metal oxide semiconductor cantilever arrays on a single chip: Mass-sensitive detection of volatile organic compounds, Anal. Chem. 74, 3084–3095 (2002)CrossRefGoogle Scholar
  87. 15.87.
    C. Vancura, M. Rüegg, Y. Li, C. Hagleitner, A. Hierlemann: Magnetically actuated complementary metal oxide semiconductor resonant cantilever gas sensor systems, Anal. Chem. 77, 2690–2699 (2005)CrossRefGoogle Scholar
  88. 15.88.
    L. Fadel, F. Lochon, I. Dufour, O. Français: Chemical sensing: Millimeter size resonant microcantilever performance, J. Micromech. Microeng. 14, S23–S30 (2004)CrossRefGoogle Scholar
  89. 15.89.
    Y.I. Wright, A.K. Kar, Y.W. Kim, C. Scholz, M.A. George: Study of microcapillary pipette-assisted method to prepare polyethylene glycol-coated microcantilever sensors, Sens. Actuator. B 107, 242–251 (2005)CrossRefGoogle Scholar
  90. 15.90.
    L.R. Senesac, P. Dutta, P.G. Datskos, M.J. Sepianiak: Analyte species and concentration identification using differentially functionalized microcantilever arrays and artificial neural networks, Anal. Chim. Acta 558, 94–101 (2006)CrossRefGoogle Scholar
  91. 15.91.
    F. Lochon, L. Fadel, I. Dufour, D. Rebière, J. Pistré: Silicon made resonant microcantilever: Dependence of the chemical sensing performances on the sensitive coating thickness, Mater. Sci. Eng. C 26, 348–353 (2006)CrossRefGoogle Scholar
  92. 15.92.
    S. Satyanarayana, D.T. McCormick, A. Majumdar: Parylene micro membrane capacitive sensor array for chemical and biological sensing, Sens. Actuator. B Chem. 115, 494–502 (2006)CrossRefGoogle Scholar
  93. 15.93.
    D. Then, A. Vidic, C. Ziegler: A highly sensitive self-oscillating cantilever array for the quantitative and qualitative analysis of organic vapor mixtures, Sens. Actuator. B Chem. 117, 1–9 (2006)CrossRefGoogle Scholar
  94. 15.94.
    P.J. Chapman, F. Vogt, P. Dutta, P.G. Datskos, G.L. Devault, M.J. Sepianiak: Facile hyphenation of gas chromatography and a microcantilever array sensor for enhanced selectivity, Anal. Chem. 79, 364–370 (2007)CrossRefGoogle Scholar
  95. 15.95.
    R. Archibald, P. Datskos, G. Devault, V. Lamberti, N. Lavrik, D. Noid, M. Sepianiak, P. Dutta: Independent component analysis of nanomechanical responses of cantilever arrays, Anal. Chim. Acta 584, 101–105 (2007)CrossRefGoogle Scholar
  96. 15.96.
    M. Alvarez, A. Calle, J. Tamayo, L.M. Lechuga, A. Abad, A. Montoya: Development of nanomechanical biosensors for detection of the pesticide DDT, Biosensor. Bioelectron. 18, 649–653 (2003)CrossRefGoogle Scholar
  97. 15.97.
    P.G. Datskos, M.J. Sepaniak, C.A. Tipple, N. Lavrik: Photomechanical chemical microsensors, Sens. Actuator. B Chem. 76, 393–402 (2001)CrossRefGoogle Scholar
  98. 15.98.
    L.A. Pinnaduwage, V. Boiadjiev, J.E. Hawk, T. Thundat: Sensitive detection of plastic explosives with self-assembled monolayer-coated microcantilevers, Appl. Phys. Lett. 83, 1471–1473 (2003)CrossRefGoogle Scholar
  99. 15.99.
    L.A. Pinnaduwage, A. Gehl, D.L. Hedden, G. Muralidharan, T. Thundat, R.T. Lareau, T. Sulchek, L. Manning, B. Rogers, M. Jones, J.D. Adams: A microsensor for trinitrotoluene vapour, Nature 425, 474–474 (2003)CrossRefGoogle Scholar
  100. 15.100.
    L.A. Pinnaduwage, D. Yi, F. Tian, T. Thundat, L.T. Lareau: Adsorption of trinitrotoluene on uncoated silicon microcantilever surfaces, Langmuir 20, 2690–2694 (2004)CrossRefGoogle Scholar
  101. 15.101.
    L.A. Pinnaduwage, A. Wig, D.L. Hedden, A. Gehl, D. Yi, T. Thundat, R.T. Lareau: Detection of trinitrotoluene via deflagration on a microcantilever, J. Appl. Phys. 95, 5871–5875 (2004)CrossRefGoogle Scholar
  102. 15.102.
    L.A. Pinnaduwage, T. Thundat, A. Gehl, S.D. Wilson, D.L. Hedden, R.T. Lareau: Desorption characteristics, of un-coated silicon microcantilever surfaces for explosive and common nonexplosive vapors, Ultramicroscopy 100, 211–216 (2004)CrossRefGoogle Scholar
  103. 15.103.
    L.A. Pinnaduwage, T. Thundat, J.E. Hawk, D.L. Hedden, R. Britt, E.J. Houser, S. Stepnowski, R.A. McGill, D. Bubb: Detection of 2,4-dinitrotoluene using microcantilever sensors, Sens. Actuator. B 99, 223–229 (2004)CrossRefGoogle Scholar
  104. 15.104.
    I. Voiculescu, M.E. Zaghloul, R.A. McGill, E.J. Houser, G.K. Fedder: Electrostatically actuated resonant microcantilever beam in CMOS technology for the detection of chemical weapons, IEEE Sensor. J. 5, 641–647 (2005)CrossRefGoogle Scholar
  105. 15.105.
    L.A. Pinnaduwage, H.F. Ji, T. Thundat: Mooreʼs law in homeland defense: An integrated sensor platform based on silicon microcantilevers, IEEE Sensor. J. 5, 774–785 (2005)CrossRefGoogle Scholar
  106. 15.106.
    Y.M. Yang, H.F. Ji, T. Thundat: Nerve agents detection using a Cu2+/L-cysteine bilayer-coated microcantilever, J. Am. Chem. Soc. 125, 1124–1125 (2003)CrossRefGoogle Scholar
  107. 15.107.
    H.F. Ji, X.D. Yan, J. Zhang, T. Thundat: Molecular recognition of biowarfare agents using micromechanical sensors, Expert Rev. Mol. Diagn. 4, 859–866 (2004)CrossRefGoogle Scholar
  108. 15.108.
    H.F. Ji, K.M. Hansen, Z. Hu, T. Thundat: Detection of pH variation using modified microcantilever sensors, Sens. Actuator. B Chem. 72, 233–238 (2001)CrossRefGoogle Scholar
  109. 15.109.
    R. Bashir, J.Z. Hilt, O. Elibol, A. Gupta, N.A. Peppas: Micromechanical cantilever as an ultrasensitive pH microsensor, Appl. Phys. Lett. 81, 3091–3093 (2002)CrossRefGoogle Scholar
  110. 15.110.
    Y.F. Zhang, H.F. Ji, D. Snow, R. Sterling, G.M. Brown: A pH sensor based on a microcantilever coated with intelligent hydrogel, Instrum. Sci. Technol. 32, 361–369 (2004)CrossRefGoogle Scholar
  111. 15.111.
    M. Watari, J. Galbraith, H.P. Lang, M. Sousa, M. Hegner, C. Gerber, M.A. Horton, R.A. McKendry: Investigating the molecular mechanisms of in-plane mechanochemistry on cantilever arrays, J. Am. Chem. Soc. 129, 601–609 (2007)CrossRefGoogle Scholar
  112. 15.112.
    A. Subramanian, P.I. Oden, S.J. Kennel, K.B. Jacobson, R.J. Warmack, T. Thundat, M.J. Doktycz: Glucose biosensing using an enzyme-coated microcantilever, Appl. Phys. Lett. 81, 385–387 (2002)CrossRefGoogle Scholar
  113. 15.113.
    X.D. Yan, H.F. Ji, Y. Lvov: Modification of microcantilevers using layer-by-layer nanoassembly film for glucose measurement, Chem. Phys. Lett. 396, 34–37 (2004)CrossRefGoogle Scholar
  114. 15.114.
    J.H. Pei, F. Tian, T. Thundat: Glucose biosensor based on the microcantilever, Anal. Chem. 76, 292–297 (2004)CrossRefGoogle Scholar
  115. 15.115.
    X.D. Yan, X.H.K. Xu, H.F. Ji: Glucose oxidase multilayer modified microcantilevers for glucose measurement, Anal. Chem. 77, 6197–6204 (2005)CrossRefGoogle Scholar
  116. 15.116.
    X.D. Yan, X.L. Shi, K. Hill, H.F. Ji: Microcantilevers modified by horseradish peroxidase intercalated nano-assembly for hydrogen peroxide detection, Anal. Sci. 22, 205–208 (2006)CrossRefGoogle Scholar
  117. 15.117.
    K.M. Hansen, H.F. Ji, G.H. Wu, R. Datar, R. Cote, A. Majumdar, T. Thundat: Cantilever-based optical deflection assay for discrimination of DNA single-nucleotide mismatches, Anal. Chem. 73, 1567–1571 (2001)CrossRefGoogle Scholar
  118. 15.118.
    M.F. Hagan, A. Majumdar, A.K. Chakraborty: Nanomechanical forces generated by surface grafted DNA, J. Phys. Chem. B 106, 10163–10173 (2002)CrossRefGoogle Scholar
  119. 15.119.
    R. Marie, H. Jensenius, J. Thaysen, C.B. Christensen, A. Boisen: Adsorption kinetics and mechanical properties of thiol-modified DNA-oligos on gold investigated by microcantilever sensors, Ultramicroscopy 91, 29–36 (2002)CrossRefGoogle Scholar
  120. 15.120.
    K.A. Stevenson, A. Mehta, P. Sachenko, K.M. Hansen, T. Thundat: Nanomechanical effect of enzymatic manipulation of DNA on microcantilever surfaces, Langmuir 18, 8732–8736 (2002)CrossRefGoogle Scholar
  121. 15.121.
    M. Su, S.U. Li, V.P. Dravid: Microcantilever resonance-based DNA detection with nanoparticle probes, Appl. Phys. Lett. 82, 3562–3564 (2003)CrossRefGoogle Scholar
  122. 15.122.
    M. Alvarez, L.G. Carrascosa, M. Moreno, A. Calle, A. Zaballos, L.M. Lechuga, C. Martinez, J. Tamayo: Nanomechanics of the formation of DNA self-assembled monolayers and hybridization on microcantilevers, Langmuir 20, 9663–9668 (2004)CrossRefGoogle Scholar
  123. 15.123.
    R.L. Gunter, R. Zhine, W.G. Delinger, K. Manygoats, A. Kooser, T.L. Porter: Investigation of DNA sensing using piezoresistive microcantilever probes, IEEE Sensor. J. 4, 430–433 (2004)CrossRefGoogle Scholar
  124. 15.124.
    M. Alvarez, J. Tamayo: Optical sequential readout of microcantilever arrays for biological detection, Sens. Actuator. B Chem. 106, 687–690 (2005)CrossRefGoogle Scholar
  125. 15.125.
    M. Calleja, M. Nordstrom, M. Alvarez, J. Tamayo, L.M. Lechuga, A. Boisen: Highly sensitive polymer-based cantilever-sensors for DNA detection, Ultramicroscopy 105, 215–222 (2005)CrossRefGoogle Scholar
  126. 15.126.
    R. Mukhopadhyay, M. Lorentzen, J. Kjems, F. Besenbacher: Nanomechanical sensing of DNA sequences using piezoresistive cantilevers, Langmuir 21, 8400–8408 (2005)CrossRefGoogle Scholar
  127. 15.127.
    L.M. Lechuga, J. Tamayo, M. Alvarez, L.G. Carrascosa, A. Yufera, R. Doldan, E. Peralias, A. Rueda, J.A. Plaza, K. Zinoviev, C. Dominguez, A. Zaballos, M. Moreno, C. Martinez, D. Wenn, N. Harris, C. Bringer, V. Bardinal, T. Camps, C. Vergnenegre, C. Fontaine, V. Diaz, A. Bernad: A highly sensitive microsystem based on nanomechanical biosensors for genomics applications, Sens. Actuator. B Chem. 118, 2–10 (2006)CrossRefGoogle Scholar
  128. 15.128.
    S.L. Biswal, D. Raorane, A. Chaiken, H. Birecki, A. Majumdar: Nanomechanical detection of DNA melting on microcantilever surfaces, Anal. Chem. 78, 7104–7109 (2006)CrossRefGoogle Scholar
  129. 15.129.
    J.C. Stachowiak, M. Yue, K. Castelino, A. Chakraborty, A. Majumdar: Chemomechanics of surface stresses induced by DNA hybridization, Langmuir 22, 263–268 (2006)CrossRefGoogle Scholar
  130. 15.130.
    F. Huber, M. Hegner, C. Gerber, H.J. Guntherodt, H.P. Lang: Label free analysis of transcription factors using microcantilever arrays, Biosens. Bioelectron. 21, 1599–1605 (2006)CrossRefGoogle Scholar
  131. 15.131.
    S.L. Biswal, D. Raorane, A. Chaiken, A. Majumdar: Using a microcantilever array for detecting phase transitions and stability of DNA, Clin. Lab. Med. 27, 163–163 (2007)CrossRefGoogle Scholar
  132. 15.132.
    J. Zhang, H.P. Lang, F. Huber, A. Bietsch, W. Grange, U. Certa, R. McKendry, H.-J. Güntherodt, M. Hegner, C. Gerber: Rapid and label-free nanomechanical detection of biomarker transcripts in human RNA, Nat. Nanotechnol. 1, 214–220 (2006)CrossRefGoogle Scholar
  133. 15.133.
    A.M. Moulin, S.J. OʼShea, M.E. Welland: Microcantilever-based biosensors, Ultramicroscopy 82, 23–31 (2000)CrossRefGoogle Scholar
  134. 15.134.
    C. Grogan, R. Raiteri, G.M. OʼConnor, T.J. Glynn, V. Cunningham, M. Kane, M. Charlton, D. Leech: Characterisation of an antibody coated microcantilever as a potential immuno-based biosensor, Biosens. Bioelectron. 17, 201–207 (2002)CrossRefGoogle Scholar
  135. 15.135.
    A. Kooser, K. Manygoats, M.P. Eastman, T.L. Porter: Investigation of the antigen antibody reaction between anti-bovine serum albumin (a-BSA) and bovine serum albumin (BSA) using piezoresistive microcantilever based sensors, Biosens. Bioelectron. 19, 503–508 (2003)CrossRefGoogle Scholar
  136. 15.136.
    C.A. Savran, S.M. Knudsen, A.D. Ellington, S.R. Manalis: Micromechanical detection of proteins using aptamer-based receptor molecules, Anal. Chem. 76, 3194–3198 (2004)CrossRefGoogle Scholar
  137. 15.137.
    J.H. Lee, K.H. Yoon, K.S. Hwang, J. Park, S. Ahn, T.S. Kim: Label free novel electrical detection using micromachined PZT monolithic thin film cantilever for the detection of C-reactive protein, Biosens. Bioelectron. 20, 269–275 (2004)CrossRefGoogle Scholar
  138. 15.138.
    Y.F. Zhang, S.P. Venkatachalan, H. Xu, X.H. Xu, P. Joshi, H.F. Ji, M. Schulte: Micromechanical measurement of membrane receptor binding for label-free drug discovery, Biosens. Bioelectron. 19, 1473–1478 (2004)CrossRefGoogle Scholar
  139. 15.139.
    N. Backmann, C. Zahnd, F. Huber, A. Bietsch, A. Pluckthun, H.P. Lang, H.J. Güntherodt, M. Hegner, C. Gerber: A label-free immunosensor array using single-chain antibody fragments, Proc. Natl. Acad. Sci. USA 102, 14587–14592 (2005)CrossRefGoogle Scholar
  140. 15.140.
    K.W. Wee, G.Y. Kang, J. Park, J.Y. Kang, D.S. Yoon, J.H. Park, T.S. Kim: Novel electrical detection of label-free disease marker proteins using piezoresistive self-sensing micro-cantilevers, Biosens. Bioelectron. 20, 1932–1938 (2005)CrossRefGoogle Scholar
  141. 15.141.
    R. Mukhopadhyay, V.V. Sumbayev, M. Lorentzen, J. Kjems, P.A. Andreasen, F. Besenbacher: Cantilever sensor for nanomechanical detection of specific protein conformations, Nano Lett. 5, 2385–2388 (2005)CrossRefGoogle Scholar
  142. 15.142.
    X. Yan, K. Hill, H. Gao, H.F. Ji: Surface stress changes induced by the conformational change of proteins, Langmuir 22, 11241–11244 (2006)CrossRefGoogle Scholar
  143. 15.143.
    H.S. Kwon, K.C. Han, K.S. Hwang, J.H. Lee, T.S. Kim, D.S. Yoon, E.G. Yang: Development of a peptide inhibitor-based cantilever sensor assay for cyclic adenosine monophosphate-dependent protein kinase, Anal. Chim. Acta, 585, 344–349 (2007)CrossRefGoogle Scholar
  144. 15.144.
    W. Shu, E.D. Laue, A.A. Seshia: Investigation of biotin-streptavidin binding interactions using microcantilever sensors, Biosens. Bioelectron. 22, 2003–2009 (2007)CrossRefGoogle Scholar
  145. 15.145.
    V. Dauksaite, M. Lorentzen, F. Besenbacher, J. Kjems: Antibody-based protein detection using piezoresistive cantilever arrays, Nanotechnology 18, 125503 (2007)CrossRefGoogle Scholar
  146. 15.146.
    M. Yue, J.C. Stachowiak, H. Lin, R. Datar, R. Cote, A. Majumdar: Label-free protein recognition two-dimensional array using nanomechanical sensors, Nano Lett. 8, 520–524 (2008)CrossRefGoogle Scholar
  147. 15.147.
    T. Braun, N. Backmann, M. Vogtli, A. Bietsch, A. Engel, H.P. Lang, C. Gerber, M. Hegner: Conformational change of bacteriorhodopsin quantitatively monitored by microcantilever sensors, Biophys. J. 90, 2970–2977 (2006)CrossRefGoogle Scholar
  148. 15.148.
    B.H. Kim, O. Mader, U. Weimar, R. Brock, D.P. Kern: Detection of antibody peptide interaction using microcantilevers as surface stress sensors, J. Vac. Sci. Technol. B 21, 1472–1475 (2003)CrossRefGoogle Scholar
  149. 15.149.
    I. Pera, J. Fritz: Sensing lipid bilayer formation and expansion with a microfabricated cantilever array, Langmuir 23, 1543–1547 (2007)CrossRefGoogle Scholar
  150. 15.150.
    S.J. Hyun, H.S. Kim, Y.J. Kim, H.I. Jung: Mechanical detection of liposomes using piezoresistive cantilever, Sens. Actuator. B Chem. 117, 415–419 (2006)CrossRefGoogle Scholar
  151. 15.151.
    B. Ilic, D. Czaplewski, M. Zalalutdinov, H.G. Craighead, P. Neuzil, C. Campagnolo, C. Batt: Single cell detection with micromechanical oscillators, J. Vac. Sci. Technol. B 19, 2825–2828 (2001)CrossRefGoogle Scholar
  152. 15.152.
    J. Park, J. Ryu, S.K. Choi, E. Seo, J.M. Cha, S. Ryu, J. Kim, B. Kim, S.H. Lee: Real-time measurement of the contractile forces of self-organized cardiomyocytes on hybrid biopolymer microcantilevers, Anal. Chem. 77, 6571–6580 (2005)CrossRefGoogle Scholar
  153. 15.153.
    S. Ghatnekar-Nilsson, J. Lindahl, A. Dahlin, T. Stjernholm, S. Jeppesen, F. Hook, L. Montelius: Phospholipid vesicle adsorption measured in situ with resonating cantilevers in a liquid cell, Nanotechnology 16, 1512–1516 (2005)CrossRefGoogle Scholar
  154. 15.154.
    N. Nugaeva, K.Y. Gfeller, N. Backmann, H.P. Lang, M. Duggelin, M. Hegner: Micromechanical cantilever array sensors for selective fungal immobilization and fast growth detection, Biosens. Bioelectron. 21, 849–856 (2005)CrossRefGoogle Scholar
  155. 15.155.
    B. Dhayal, W.A. Henne, D.D. Doorneweerd, R.G. Reifenberger, P.S. Low: Detection of Bacillus subtilis spores using peptide-functionalized cantilever arrays, J. Am. Chem. Soc. 128, 3716–3721 (2006)CrossRefGoogle Scholar
  156. 15.156.
    G. Wu, R.H. Datar, K.M. Hansen, T. Thundat, R.J. Cote, A. Majumdar: Bioassay of prostate-specific antigen (PSA) using microcantilevers, Nat. Biotechnol. 19, 856–860 (2001)CrossRefGoogle Scholar
  157. 15.157.
    K.S. Hwang, J.H. Lee, J. Park, D.S. Yoon, J.H. Park, T.S. Kim: In-situ quantitative analysis of a prostate-specific antigen (PSA) using a nanomechanical PZT cantilever, Lab. Chip. 4, 547–552 (2004)CrossRefGoogle Scholar
  158. 15.158.
    J.H. Lee, K.S. Hwang, J. Park, K.H. Yoon, D.S. Yoon, T.S. Kim: Immunoassay of prostate-specific antigen (PSA) using resonant frequency shift of piezoelectric nanomechanical microcantilever, Biosens. Bioelectron. 20, 2157–2162 (2005)CrossRefGoogle Scholar
  159. 15.159.
    S. Velanki, H.-F. Ji: Detection of feline coronavirus using microcantilever sensors, Meas. Sci. Technol. 17, 2964–2968 (2006)CrossRefGoogle Scholar
  160. 15.160.
    D. Maraldo, F.U. Garcia, R. Mutharasan: Method for quantification of a prostate cancer biomarker in urine without sample preparation, Anal. Chem. 79, 7683–7690 (2007)CrossRefGoogle Scholar
  161. 15.161.
    W.Y. Shih, X.P. Li, H.M. Gu, W.H. Shih, I.A. Aksay: Simultaneous liquid viscosity and density determination with piezoelectric unimorph cantilevers, J. Appl. Phys. 89, 1497–1505 (2001)CrossRefGoogle Scholar
  162. 15.162.
    A. Agoston, F. Keplinger, B. Jakoby: Evaluation of a vibrating micromachined cantilever sensor for measuring the viscosity of complex organic liquids, Sens. Actuator. A Phys. 123/124, 82–86 (2005)CrossRefGoogle Scholar
  163. 15.163.
    N. McLoughlin, S.L. Lee, G. Hahner: Simultaneous determination of density and viscosity of liquids based on resonance curves of uncalibrated microcantilevers, Appl. Phys. Lett. 89, 184106 (2006)CrossRefGoogle Scholar
  164. 15.164.
    U. Sampath, S.M. Heinrich, F. Josse, F. Lochon, I. Dufour, D. Rebière: Study of viscoelastic effect on the frequency shift of microcantilever chemical sensors, IEEE Trans. Ultrason. Ferroelectr. 53, 2166–2173 (2006)CrossRefGoogle Scholar
  165. 15.165.
    A. Jana, A. Raman, B. Dhayal, S.L. Tripp, R.G. Reifenberger: Microcantilever mechanics in flowing viscous fluids, Appl. Phys. Lett. 90, 114110 (2007)CrossRefGoogle Scholar
  166. 15.166.
    M. Hennemeyer, S. Burghardt, R. Stark: Cantilever micro-rheometer for the characterization of sugar solutions, Sensors 8, 10–22 (2008)CrossRefGoogle Scholar
  167. 15.167.
    K.B. Brown, Y. Ma, W. Allegretto, R.P.W. Lawson, F.E. Vermeulen, A.M. Robinson: Microstructural pressure sensor based on an enhanced resonant mode hysteresis effect, J. Vac. Sci. Technol. B 19, 1628–1632 (2001)CrossRefGoogle Scholar
  168. 15.168.
    K.B. Brown, W. Allegretto, F.E. Vermeulen, A.M. Robinson: Simple resonating microstructures for gas pressure measurement, J. Micromech. Microeng. 12, 204–210 (2002)CrossRefGoogle Scholar
  169. 15.169.
    Y. Su, A.G.R. Evans, A. Brunnschweiler, G. Ensell: Characterization of a highly sensitive ultra-thin piezoresistive silicon cantilever probe and its application in gas flow velocity sensing, J. Micromech. Microeng. 12, 780–785 (2002)CrossRefGoogle Scholar
  170. 15.170.
    J. Mertens, E. Finot, T. Thundat, A. Fabre, M.H. Nadal, V. Eyraud, E. Bourillot: Effects of temperature and pressure on microcantilever resonance response, Ultramicroscopy 97, 119–126 (2003)CrossRefGoogle Scholar
  171. 15.171.
    V. Mortet, R. Petersen, K. Haenen, M. DʼOlieslaeger: Wide range pressure sensor based on a piezoelectric bimorph microcantilever, Appl. Phys. Lett. 88, 133511 (2006)CrossRefGoogle Scholar
  172. 15.172.
    P. Sievilä, V.P. Rytkönen, O. Hahtela, N. Chekurov, J. Kauppinen, I. Tittonen: Fabrication and characterization of an ultrasensitive acousto-optical cantilever, J. Micromech. Microeng. 17, 852–859 (2007)CrossRefGoogle Scholar
  173. 15.173.
    C.A. Jong, T.S. Chin, W.L. Fang: Residual stress and thermal expansion behavior of TaOxNy films by the micro-cantilever method, Thin Solid Films 401, 291–297 (2001)CrossRefGoogle Scholar
  174. 15.174.
    F. Shen, P. Lu, S.J. OʼShea, K.H. Lee, T.Y. Ng: Thermal effects on coated resonant microcantilevers, Sens. Actuator. A Phys. 95, 17–23 (2001)CrossRefGoogle Scholar
  175. 15.175.
    P.G. Datskos, P.I. Oden, T. Thundat, E.A. Wachter, R.J. Warmack, S.R. Hunter: Remote infrared radiation detection using piezoresistive microcantilevers, Appl. Phys. Lett. 69, 2986–2988 (1996)CrossRefGoogle Scholar
  176. 15.176.
    P.I. Oden, P.G. Datskos, T. Thundat, R.J. Warmack: Uncooled thermal imaging using a piezoresistive microcantilever, Appl. Phys. Lett. 69, 3277–3279 (1996)CrossRefGoogle Scholar
  177. 15.177.
    E.A. Wachter, T. Thundat, P.I. Oden, R.J. Warmack, P.G. Datskos, S.L. Sharp: Remote optical detection using microcantilevers, Rev. Sci. Instrum. 67, 3434–3439 (1996)CrossRefGoogle Scholar
  178. 15.178.
    P.G. Datskos, S. Rajic, I. Datskou: Detection of infrared photons using the electronic stress in metal-semiconductor cantilever interfaces, Ultramicroscopy 82, 49–56 (2000)CrossRefGoogle Scholar
  179. 15.179.
    C.B. Li, B.B. Jiao, S.L. Shi, D.P. Chen, T.C. Ye, Q.C. Zhang, Z.Y. Guo, F.L. Dong, Z.Y. Miao: A novel uncooled substrate-free optical-readable infrared detector: design, fabrication and performance, Meas. Sci. Technol. 17, 1981–1986 (2006)CrossRefGoogle Scholar
  180. 15.180.
    X. Yu, Y. Yi, S. Ma, M. Liu, X. Liu, L. Dong, Y. Zhao: Design and fabrication of a high sensitivity focal plane array for uncooled IR imaging, J. Micromech. Microeng. 18, 057001 (2008)CrossRefGoogle Scholar
  181. 15.181.
    B. Jiao, C. Li, D. Chen, T. Ye, Y. Ou, L. Dong, Q. Zhang: An optical readout method based uncooled infrared imaging system, Int. J. Infrared Millim. Waves 29, 261–271 (2008)CrossRefGoogle Scholar
  182. 15.182.
    T.P. Burg, S.R. Manalis: Suspended microchannel resonators for biomolecular detection, Appl. Phys. Lett. 83, 2698–2700 (2003)CrossRefGoogle Scholar
  183. 15.183.
    P. Dutta, C. Tipple, N. Lavrik, P. Datskos: Enantioselective sensors based on antibody-mediated nanomechanics, Anal. Chem. 75, 2342–2348 (2003)CrossRefGoogle Scholar
  184. 15.184.
    H.F. Ji, Y.Q. Lu, H.W. Du, X.H. Xu, T. Thundat: Spiral springs and microspiral springs for chemical and biological sensing, Appl. Phys. Lett. 88, 063504 (2006)CrossRefGoogle Scholar
  185. 15.185.
    G. Singh, P. Rice, R.L. Mahajan: Fabrication and mechanical characterization of a force sensor based on an individual carbon nanotube, Nanotechnology 18, 475501 (2007)CrossRefGoogle Scholar
  186. 15.186.
    A. Sakhaee-Pour, M.T. Ahmadian, A. Vafai: Applications of single-layered graphene sheets as mass sensors and atomistic dust detectors, Solid State Commun. 145, 168–172R (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Institute of Physics, National Competence Center for Research in Nanoscale Science (NCCR) BaselUniversity of BaselBaselSwitzerland
  2. 2.School of PhysicsCRANN – The Naughton Institute Trinity College, University of DublinDublinIreland
  3. 3.Institute of Physics National Competence Center for Research in Nanoscale Science (NCCR) BaselUniversity of BaselBaselSwitzerland

Personalised recommendations