Cortical Correspondence with Probabilistic Fiber Connectivity

  • Ipek Oguz
  • Marc Niethammer
  • Josh Cates
  • Ross Whitaker
  • Thomas Fletcher
  • Clement Vachet
  • Martin Styner
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5636)


This paper presents a novel method of optimizing point-based correspondence among populations of human cortical surfaces by combining structural cues with probabilistic connectivity maps. The proposed method establishes a tradeoff between an even sampling of the cortical surfaces (a low surface entropy) and the similarity of corresponding points across the population (a low ensemble entropy). The similarity metric, however, isn’t constrained to be just spatial proximity, but uses local sulcal depth measurements as well as probabilistic connectivity maps, computed from DWI scans via a stochastic tractography algorithm, to enhance the correspondence definition. We propose a novel method for projecting this fiber connectivity information on the cortical surface, using a surface evolution technique. Our cortical correspondence method does not require a spherical parameterization. Experimental results are presented, showing improved correspondence quality demonstrated by a cortical thickness analysis, as compared to correspondence methods using spatial metrics as the sole correspondence criterion.


Cortical Thickness Cortical Surface Minimum Description Length Connectivity Probability Correspondence Feature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Fischl, B., Sereno, M.I., Dale, A.M.: Cortical surface-based analysis II: Inflation, flattening, and a surface-based coordinate system. NeuroImage 9, 195–207 (1999)CrossRefGoogle Scholar
  2. 2.
    Fischl, B., Sereno, M., Tootell, R., Dale, A.: High-res. intersubject averaging and a coordinate system for the cortical surface. Human Brain Mapping, 272–284 (1999)Google Scholar
  3. 3.
    Tosun, D., Prince, J.: Cortical surface alignment using geometry driven multispectral optical flow. In: Christensen, G.E., Sonka, M. (eds.) IPMI 2005. LNCS, vol. 3565, pp. 480–492. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  4. 4.
    Styner, M., Xu, S., El-Sayed, M., Gerig, G.: Correspondence evaluation in local shape analysis and structural subdivision. In: ISBI, pp. 1192–1195 (2007)Google Scholar
  5. 5.
    Oguz, I., Cates, J., Fletcher, T., Whitaker, R., Cool, D., Aylward, S., Styner, M.: Cortical correspondence using entropy-based particle systems and local features. In: IEEE Symposium on Biomedical Imaging, ISBI 2008, pp. 1637–1640 (2008)Google Scholar
  6. 6.
    Styner, M., Rajamani, K., Nolte, L., Zsemlye, G., Székely, G., Taylor, C., Davies, R.: Evaluation of 3D correspondence methods for model building. In: Taylor, C.J., Noble, J.A. (eds.) IPMI 2003. LNCS, vol. 2732, pp. 63–75. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  7. 7.
    Kotcheff, A.C., Taylor, C.J.: Automatic construction of eigenshape models by direct optimization. Medical Image Analysis 2(4), 303–314 (1998)CrossRefGoogle Scholar
  8. 8.
    Davies, R., Twining, C., Cootes, T., Waterton, J., Taylor, C.: A minimum description length approach to statistical shape modeling. TMI 21(5), 525–537 (2002)zbMATHGoogle Scholar
  9. 9.
    Brechbühler, C., Gerig, G., Kübler, O.: Parametrization of closed surfaces for 3-D shape description. CVIU 61, 154–170 (1995)Google Scholar
  10. 10.
    Styner, M., Oguz, I., Heimann, T., Gerig, G.: Minimum description length with local geometry. In: Proc. ISBI, pp. 283–1286 (2008)Google Scholar
  11. 11.
    Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley-Intersc., Chichester (1991)CrossRefzbMATHGoogle Scholar
  12. 12.
    Cates, J., Fletcher, T., Whitaker, R.: Entropy-based particle systems for shape correspondence. In: MFCA Workshop, MICCAI 2006, pp. 90–99 (2006)Google Scholar
  13. 13.
    Cates, J., Fletcher, T., Styner, M., Shenton, M., Whitaker, R.: Shape modeling and analysis with entropy-based particle systems. In: Karssemeijer, N., Lelieveldt, B. (eds.) IPMI 2007. LNCS, vol. 4584, pp. 333–345. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  14. 14.
    Basser, P.J., Pajevic, S., Pierpaoli, C., Duda, J., Aldroubi, A.: In vivo fiber tractography using DT-MRI data. Magnetic Resonance in Medicine 44, 625–632 (2000)CrossRefGoogle Scholar
  15. 15.
    Friman, O., Westin, C.F.: Uncertainty in white matter fiber tractography. In: Duncan, J.S., Gerig, G. (eds.) MICCAI 2005. LNCS, vol. 3749, pp. 107–114. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  16. 16.
    Behrens, T., Woolrich, M., Jenkinson, M., Johansen-Berg, H., Nunes, R., Clare, S., Matthews, P., Brady, J., Smith, S.: Characterization and propagation of uncertainty in diffusion-weighted MR imaging. Mag. Res. Med. 50, 1077–1088 (2003)CrossRefGoogle Scholar
  17. 17.
    Jones, D., Pierpaoli, C.: Confidence mapping in DT-MRI tractography using a bootstrap approach. Mag. Res. Med. 53, 1143–1149 (2005)CrossRefGoogle Scholar
  18. 18.
    Prastawa, M., Gilmore, J., Lin, W., Gerig, G.: Automatic segmentation of MR images of the developing newborn brain. In: Medical Image Analysis, pp. 457–466 (2005)Google Scholar
  19. 19.
    Tosun, D., Rettmann, M., Prince, J.: Mapping techniques for aligning sulci across multiple brains. Medical Image Analysis 8(3), 295–309 (2004)CrossRefGoogle Scholar
  20. 20.
    Meyer, M., Desbrun, M., Schroder, P., Barr, A.: Discrete differential-geometry operators for triangulated 2-manifolds. VisMath, 35–57 (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Ipek Oguz
    • 1
  • Marc Niethammer
    • 1
    • 3
  • Josh Cates
    • 4
  • Ross Whitaker
    • 4
  • Thomas Fletcher
    • 4
  • Clement Vachet
    • 2
  • Martin Styner
    • 1
    • 2
  1. 1.Departments of Computer ScienceUSA
  2. 2.PsychiatryUSA
  3. 3.Biomedical Research Imaging CenterUniversity of North CarolinaChapel HillUSA
  4. 4.Scientific Computing and Imaging InstituteUniversity of UtahSalt Lake CityUSA

Personalised recommendations