Active Imaging with Dual Spin-Echo Diffusion MRI

  • Jonathan D. Clayden
  • Zoltan Nagy
  • Matt G. Hall
  • Chris A. Clark
  • Daniel C. Alexander
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5636)


Active imaging is a recently developed approach to model-based optimisation of imaging protocols. In the application we discuss here, a diffusion magnetic resonance imaging (dMRI) protocol is optimised for directly measuring aspects of biological tissue microstructure, subject to appropriate scanner hardware and acquisition time constraints. We present the theoretical basis for active imaging with the dual spin-echo (DSE) dMRI pulse sequence, which is more complex than the standard sequence, but widely used due to its robustness to image distortion. The new formulation provides the basis for future active imaging studies using DSE. To demonstrate the approach, we optimise DSE sequences for estimating parameters in a simple model of neural white matter, specifically axon density and diameter. Results show that sensitivity to these important parameters is at least as good as with more traditional pulse sequences that are not robust to image distortion.


Markov Chain Monte Carlo Active Imaging Tissue Model Gradient Pulse Radio Frequency Pulse 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Le Bihan, D.: Looking into the functional architecture of the brain with diffusion MRI. Nature Reviews Neuroscience 4, 469–480 (2003)CrossRefGoogle Scholar
  2. 2.
    Baird, A., Warach, S.: Magnetic resonance imaging of acute stroke. Journal of Cerebral Blood Flow & Metabolism 18, 583–609 (1998)CrossRefGoogle Scholar
  3. 3.
    Basser, P., Mattiello, J., Le Bihan, D.: Estimation of the effective self-diffusion tensor from the NMR spin echo. Journal of Magnetic Resonance, Series B 103, 247–254 (1994)CrossRefGoogle Scholar
  4. 4.
    Horsfield, M., Jones, D.: Applications of diffusion-weighted and diffusion tensor MRI to white matter diseases - a review. NMR in Biomedicine 15, 570–577 (2002)CrossRefGoogle Scholar
  5. 5.
    Lim, K., Helpern, J.: Neuropsychiatric applications of DTI - a review. NMR in Biomedicine 15, 587–593 (2002)CrossRefGoogle Scholar
  6. 6.
    Behrens, T., Johansen-Berg, H., Woolrich, M., Smith, S., Wheeler-Kingshott, C., Boulby, P., Barker, G., Sillery, E., Sheehan, K., Ciccarelli, O., Thompson, A., Brady, J., Matthews, P.: Non-invasive mapping of connections between human thalamus and cortex using diffusion imaging. Nature Neuroscience 6, 750–757 (2003)CrossRefGoogle Scholar
  7. 7.
    Neuman, C.: Spin echo of spins diffusing in a bounded medium. Journal of Chemical Physics 60, 4508–4511 (1974)CrossRefGoogle Scholar
  8. 8.
    Alexander, D.: Axon radius measurements in vivo from diffusion MRI: a feasibility study. In: Proceedings of the IEEE 11th International Conference on Computer Vision. IEEE, Los Alamitos (2007)Google Scholar
  9. 9.
    Assaf, Y., Basser, P.: Composite hindered and restricted model of diffusion (CHARMED) MR imaging of the human brain. NeuroImage 27, 48–58 (2005)CrossRefGoogle Scholar
  10. 10.
    Assaf, Y., Blumenfeld-Katzir, T., Yovel, Y., Basser, P.: Axcaliber: A method for measuring axon diameter distribution from diffusion MRI. Magnetic Resonance in Medicine 59, 1347–1354 (2008)CrossRefGoogle Scholar
  11. 11.
    Stanisz, G., Szafer, A., Wright, G., Henkelman, R.: An analytical model of restricted diffusion in bovine optic nerve. Magnetic Resonance in Medicine 37, 103–111 (1997)CrossRefGoogle Scholar
  12. 12.
    Weng, J.C., Chen, J.H., Kuo, L.W., Wedeen, V., Tseng, W.Y.: Maturation-dependent microstructure length scale in the corpus callosum of fixed rat brains by magnetic resonance diffusion-diffraction. Magnetic Resonance Imaging 25, 78–86 (2007)CrossRefGoogle Scholar
  13. 13.
    Andersson, J.: Maximum a posteriori estimation of diffusion tensor parameters using a Rician noise model: Why, how and but. NeuroImage 42, 1340–1356 (2008)CrossRefGoogle Scholar
  14. 14.
    Cercignani, M., Alexander, D.: Optimal acquisition schemes for in vivo quantitative magnetization transfer MRI. Magnetic Resonance in Medicine 56, 803–810 (2006)CrossRefGoogle Scholar
  15. 15.
    MacKay, D.: Information-based objective functions for active data selection. Neural Computation 4, 590–604 (1992)CrossRefGoogle Scholar
  16. 16.
    Alexander, D.: A general framework for experiment design in diffusion MRI and its application to measuring direct tissue-microstructure features. Magnetic Resonance in Medicine 60, 439–448 (2008)CrossRefGoogle Scholar
  17. 17.
    Stejskal, E., Tanner, J.: Spin diffusion measurements: spin echoes in the presence of a time-dependent field gradient. Journal of Chemical Physics 42, 288–292 (1965)CrossRefGoogle Scholar
  18. 18.
    Reese, T., Heid, O., Weisskoff, R., Wedeen, V.: Reduction of eddy-current-induced distortion in diffusion MRI using a twice-refocused spin echo. Magnetic Resonance in Medicine 49, 177–182 (2003)CrossRefGoogle Scholar
  19. 19.
    van Gelderen, P., DesPres, D., van Zijl, P., Moonen, C.: Evaluation of restricted diffusion in cylinders. Phosphocreatine in rabbit leg muscle. Journal of Magnetic Resonance, Series B 103, 255–260 (1994)CrossRefGoogle Scholar
  20. 20.
    Heid, O.: Eddy current-nulled diffusion weighting. In: Proceedings of the ISMRM 8th Scientific Meeting & Exhibition, International Society for Magnetic Resonance in Medicine, p. 799 (2000)Google Scholar
  21. 21.
    Henkelman, R.: Measurement of signal intensities in the presence of noise in MR images. Medical Physics 12, 232–233 (1985)CrossRefGoogle Scholar
  22. 22.
    Rakhmanov, E., Saff, E., Zhou, Y.: Minimal discrete energy on the sphere. Mathematical Research Letters 1, 647–662 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Hall, M., Alexander, D.: A tissue model of white matter undergoing tissue swelling. In: Proceedings of the MICCAI Workshop on Computational Diffusion MRI (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Jonathan D. Clayden
    • 1
  • Zoltan Nagy
    • 2
  • Matt G. Hall
    • 3
    • 4
  • Chris A. Clark
    • 1
  • Daniel C. Alexander
    • 3
    • 4
  1. 1.Institute of Child HealthUK
  2. 2.Wellcome Trust Centre for NeuroimagingUK
  3. 3.Department of Computer ScienceUK
  4. 4.Centre for Medical Image ComputingUniversity College LondonUK

Personalised recommendations