Joint Bayesian Cortical Sulci Recognition and Spatial Normalization

  • Matthieu Perrot
  • Denis Rivière
  • Alan Tucholka
  • Jean-François Mangin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5636)


In this paper, we study the recognition of about 60 sulcal structures over a new T1 MRI database of 62 subjects. It continues our previous work [7] and more specifically extends the localization model of sulci (SPAM). This model is sensitive to the chosen common space during the group study. Thus, we focus the current work on refining this space using registration techniques. Nevertheless, we also benefit from the sulcuswise localization variability knowledge to constrain the normalization. So, we propose a consistent Bayesian framework to jointly identify and register sulci, with two complementary normalization techniques and their detailed integration in the model: a global rigid transformation followed by a piecewise rigid-one, sulcus after sulcus. Thereby, we have improved the sulci labeling quality to a global recognition rate of 86%, and moreover obtained a basic but robust registration technique.


cortical folds labeling sulci registration SPAM EM 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
  2. 2.
    Régis, J., Mangin, J.-F., Ochiai, T., Frouin, V., Rivière, D., Cachia, A., Tamura, M., Samson, Y.: Sulcal root generic model: a hypothesis to overcome the variability of the human cortex folding patterns. Neurol. Med. Chir. 45, 1–17 (2005)CrossRefGoogle Scholar
  3. 3.
    Poupon, C., Poupon, F., Allirol, L., Mangin, J.-F.: A database dedicated to anatomo-functional study of human brain connectivity. In: 12th Ann. Meet. Org. Human Brain Mapping (2006)Google Scholar
  4. 4.
    Pinel, P., Thirion, B., Meriaux, S., Jobert, A., Serres, J., Bihan, D.L., Poline, J.-B., Dehaene, S.: Fast reproducible identification and large-scale databasing of individual functional cognitive networks. BMC Neurosci. 8, 91 (2007)CrossRefGoogle Scholar
  5. 5.
    Mangin, J.-F., Frouin, V., Bloch, I., Régis, J., Lopez-Krahe, J.: From 3D Magnetic Resonance Images to Structural Representations of the Cortex Topography Using Topology Preserving Deformations. Journal of Mathematical Imaging and Vision 5, 297–318 (1995)CrossRefGoogle Scholar
  6. 6.
    Rivière, D., Mangin, J.-F., Papadopoulos-Orfanos, D., Martinez, J.-M., Frouin, V., Régis, J.: Automatic Recognition of Cortical Sulci Using a Congregation of Neural Networks. MIA 6, 77–92 (2002)Google Scholar
  7. 7.
    Perrot, M., Rivière, D., Mangin, J.-F.: Identifying cortical sulci from localization, shape and local organization. In: ISBI, pp. 420–423 (2008)Google Scholar
  8. 8.
    Cathier, P., Mangin, J.-F., Pennec, X., Rivière, D., Papadopoulos-Orfanos, D., Régis, J., Ayache, N.: Multisubject non-rigid registration of brain MRI using intensity and geometric features. In: Niessen, W.J., Viergever, M.A. (eds.) MICCAI 2001. LNCS, vol. 2208, pp. 734–742. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  9. 9.
    Dempster, A., Laird, N., Rubin, D.: Maximum likelihood from incomplete data via the em algorithm. Journal of the Royal Statistical Society, Series B 39(1), 1–38 (1977)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Powell, M.J.D.: An Efficient Method for Finding the Minimum of a Function of Several Variables Without Calculating Derivatives. Computer Journal 7, 155–162 (1964)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Mardia, K.V., Jupp, P.: Directional Statistics, 2nd edn. John Wiley and Sons Ltd., Chichester (2000)zbMATHGoogle Scholar
  12. 12.
    Talairach, J., Tournoux, P.: Co-planar Stereotaxic Atlas of the Human Brain. Georg Thieme Verlag, Stuttgart (1988)Google Scholar
  13. 13.
    Evans, A.C., Collins, D.L., Neelin, P., MacDonald, D., Kamber, M., Marrett, T.S.: Three-Dimensional Correlative Imaging: Applications in Human Brain Mapping. Functional Neuroimaging 14, 145–161 (1994)Google Scholar
  14. 14.
    Le Goualher, G., Collins, D.L., Barillot, C., Evans, A.C.: Automatic Identification of Cortical Sulci Using a 3D Probabilistic Atlas. In: Wells, W.M., Colchester, A.C.F., Delp, S.L. (eds.) MICCAI 1998. LNCS, vol. 1496, pp. 509–518. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  15. 15.
    Lohmann, G., von Cramon, D.Y.: Automatic labelling of the human cortical surface using sulcal basins. Medical image analysis 4(3), 179–188 (2000)CrossRefGoogle Scholar
  16. 16.
    Lohmann, G., von Cramon, D.Y., Colchester, A.C.F.: Deep Sulcal Landmarks Provide an Organizing Framework for Human Cortical Folding. Cerebral Cortex 18(6), 1415–1420 (2008)CrossRefGoogle Scholar
  17. 17.
    Tosun, D., Prince, J.L.: A Geometry-Driven Optical Flow Warping for Spatial Normalization of Cortical Surfaces. TMI 27(12), 1739–1753 (2008)Google Scholar
  18. 18.
    Yang, F., Kruggel, F.: Optimization Algorithms for Labeling Brain Sulci Based on Graph Matching. In: ICCV, pp. 1–7 (2007)Google Scholar
  19. 19.
    Vaillant, M., Davatzikos, C.: Hierarchical Matching of Cortical Features for Deformable Brain Image Registration. In: Kuba, A., Sámal, M., Todd-Pokropek, A. (eds.) IPMI 1999. LNCS, vol. 1613, pp. 182–195. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  20. 20.
    Yeo, B., Sabuncu, M., Desikan, R., Fischl, B., Golland, P.: Effects of registration regularization and atlas sharpness on segmentation accuracy. Med. Image Anal. 12(5), 603–615 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Matthieu Perrot
    • 1
    • 2
    • 4
  • Denis Rivière
    • 1
    • 4
  • Alan Tucholka
    • 1
    • 3
    • 4
  • Jean-François Mangin
    • 1
    • 2
    • 4
  1. 1.CEA, Neurospin, LNAOSaclayFrance
  2. 2.INSERM U.797OrsayFrance
  3. 3.INRIA Saclay-île-de-France, ParietalSaclayFrance
  4. 4.IFR 49ParisFrance

Personalised recommendations