Handbook of Power Systems I pp 121-148

Part of the Energy Systems book series (ENERGY) | Cite as

Optimization Models in the Natural Gas Industry

  • Qipeng P. Zheng
  • Steffen Rebennack
  • Niko A. Iliadis
  • Panos M. Pardalos
Chapter

Abstract

With the surge of the global energy demand, natural gas plays an increasingly important role in the global energy market. To meet the demand, optimization techniques have been widely used in the natural gas industry, and has yielded a lot of promising results. In this chapter, we give a detailed discussion of optimization models in the natural gas industry, with the focus on the natural gas production, transportation, and market.

Keywords

Gas market Gas recovery Gas transmission Mixed integer nonlinear programming (MINLP) Mixed integer programming (MIP) Natural gas industry Optimization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Al-Hussainy R (1967) Transient flow of ideal and real gases through porous media. PhD thesis, Texas A&M University, College StationGoogle Scholar
  2. Annual Energy Review (AER) (2009) Technical Report DOE/EIA-0384(2008), US Department of Energy, Energy Information Administration, 26 June 2009Google Scholar
  3. Avery W, Brown GG, Rosenbranz JA, Wood RK (1992) Optimization of purchase, storage and transmission contracts for natural gas utilities. Oper Res 40(3):446–462CrossRefGoogle Scholar
  4. Babu BV, Angira R, Chakole PG, Syed Mubeen JH (2008) Optimal design of gas transmission network using differential evolution. http://discovery.bits-pilani.ac.in/discipline/chemical/BVb/RevisedBabRakPalMub%20CIRAS-2003.pdf
  5. Bazaraa M, Sherali HD, Shetty CM (2006) Nonlinear programming, 3rd edn. Wiley, New YorkCrossRefMATHGoogle Scholar
  6. Beggs HD (1984) Gas production operations. Oil Gas Consultants International Inc., Tulsa, OklahomaGoogle Scholar
  7. Boots MG, Rijkers FAM, Hobbs BF (2004) Modeling the role of trading companies in the downstream European gas market: A successive oligopoly approach. Energ J 25(3):73–102Google Scholar
  8. BP (2008) BP Statistical Review of World Energy 2008. London, UK, June 2008Google Scholar
  9. Breton N, Zaccour Z (2001) Equilibria in an asymmetric duopoly facing a security constraint. Energ Econ 25:457–475CrossRefGoogle Scholar
  10. Brooks RE (2003) Optimizing complex natural gas models. http://rbac.com/Articles/tabid/63/Default.aspx
  11. Brooks RE, Neill CP (2003) Natural gas operations optimizing system. http://rbac.com/Articles/tabid/63/Default.aspx
  12. Cameron F (2007) The north stream gas pipeline project and its strategic implications. Briefing Note for The European Parliament’s committee on Petitions, December 2007Google Scholar
  13. Chabar RM, Pereira MVF, Granville S, Barroso LA, Iliadis N (2006) Optimization of fuel contracts management and maintenance scheduling for thermal plants under price uncertainty. In Proceedings of the 2006 Power Systems Conference Expo (PSCE 06), October, pp. 923–930Google Scholar
  14. Chebouba A, Yalaoui F, Smati A, Amodeo L, Younsi K, Tairi A (2009) Optimization of natural gas pipeline transportation using at colony optimization. Comput Oper Res 36(6):1916–1923CrossRefMATHGoogle Scholar
  15. Cottle RW, Pang JS, Stone RE (1992) Linear complementarity problem. Academic Press, NYMATHGoogle Scholar
  16. De Wolf D, de Bisthoven OJ, Smeers Y (1991) The simplex algorithm extended to piecewise linearly constrained problems I: The method and an implementation, CORE DP No. 9119, Universite Catholique de Louvain, BelgiumGoogle Scholar
  17. De Wolf D, Smeers Y (1996) Optimal dimensioning of pipe networks with application to gas transmission networks. Oper Res 44:596–608CrossRefMATHGoogle Scholar
  18. De Wolf D, Smeers Y (1997) A stochastic version of a Stackelberg Nash-Cournot equilibrium model. Manag Sci 43(2):190–197CrossRefMATHGoogle Scholar
  19. De Wolf D, Smeers Y (2000) The gas transmission problem solved by an extension of the simplex algorithm. Manag Sci 46:1454–1465CrossRefMATHGoogle Scholar
  20. Edgar TF, Himmelblau DM (2001) Optimization of chemical processes. McGraw-Hill, New YorkGoogle Scholar
  21. Edgar TF, Himmelblau DM, Bickel TC (1978) Optimal design of gas transmission networks. Soc Petrol Eng J 30:96–104Google Scholar
  22. Energy Information Administration (2003) The national energy modeling system: an overview, natural gas transmission and distribution module. http://www.eia.doe.gov/oiaf/aeo/overview/nat_gas.html
  23. Facchinei F, Pang JS (2003) Finite-dimensional variational inequalities and complementarity problems, vol. I and II. Springer, New YorkGoogle Scholar
  24. Gabriel SA, Manik J, Vikas S (2003) Computational experience with a large-scale, multi period, spatial equilibrium model of the North America natual gas system. Networks Spatial Econ 3:97–122CrossRefGoogle Scholar
  25. Gabriel SA, Kiet S, Zhuang J (2005) A mixed complementarity-based equilibrium model of natural gas markets. Oper Res 53(5):799–818CrossRefMATHMathSciNetGoogle Scholar
  26. Goldberg DE (1983) Computer-aided gas pipeline operation using genetic algorithms and rule learning. PhD thesis, University of MichiganGoogle Scholar
  27. Hiriart-Urruty JB, Lemarechal C (1993) Convex analysis and minimization algorithms Springer, BerlinGoogle Scholar
  28. Horne RN (2002) Optimization applications in oil and gas recovery. In: Handbook of applied optimization, pp. 808–813. Oxford University Press, New YorkGoogle Scholar
  29. Horst R, Pardalos PM, Thoai NV (2000) Introduction to global optimization, 2nd edn. Kluwer, The NetherlandCrossRefMATHGoogle Scholar
  30. International Energy Outlook 2009 Technical Report DOE/EIA-0484(2009), US Department of Energy, Energy Information Administration, 27 May 2009. Chapter 3 – Natural GasGoogle Scholar
  31. Kallrath J, Wilson JM (1997) Business Optimization using Mathematical Programming. MacMillan BusinessGoogle Scholar
  32. Locatelli M, Thoai NV (2000) Finite exact branch-and-bound algorithms for concave minimization over polytopes. J Global Optim 18:107–128CrossRefMATHMathSciNetGoogle Scholar
  33. Luo ZQ, Pang JS, Ralph D (1996) Mathematical programs with equilibrium constraints. Cambridge University Press, LondonCrossRefGoogle Scholar
  34. Mantini LA, Beyer WA (1979) Optimization of natural gas production by waterflooding. Appl Math Optim 5:101–116CrossRefMATHMathSciNetGoogle Scholar
  35. Midthun KT (2007) Optimization models for liberalized natural gas markets. PhD thesis, Norwegian University of Science and Technology, 2007Google Scholar
  36. Munoz J, Jimenez-Redondo N, Perez-Ruiz J, Barquin J (2003) Natural gas network modeling for power systems reliability studies. 2003 IEEE Bologna PowerTech Conference, 23–26 June, Bologna, Italy, 2003Google Scholar
  37. Murray JE, Edgar TF (1978) Optimal scheduling of production and compression in gas fields. SPE J Petrol Technol 30:109–116Google Scholar
  38. Murty KG (1988) Linear complementarity, linear and nonlinear programming. Helderman. http://ioe.engin.umich.edu/people/fac/books/murty/linear_complementarity_webbook/
  39. Nemhauser GL, Wolsey LA (1999) Integer and combinatorical optimization. Wiley, New YorkGoogle Scholar
  40. O’Neil RP, Williard M, Wilkins B, Pike R (1979) A mathematical programming model for allocation of natural gas. Oper Res 27(5):857–873CrossRefGoogle Scholar
  41. Pereira MVF, Pinto LMVG (1991) Multi-stage stochastic optimization applied to energy planning. Math Program 52:359–375CrossRefMATHMathSciNetGoogle Scholar
  42. Peretti A, Toth P (1982) Optimization of a pipeline for the natural gas transport. Eur J Oper Res 11:247–254CrossRefGoogle Scholar
  43. Rios-Mercado (2002) Natural gas pipleline optimization. In: Handbook of applied optimization. Oxford University Press, New York, pp. 813–826Google Scholar
  44. Rios-Mercado RZ, Kim S, Boyd EA (2006) Efficient operation of natural gas transmission systems: a network-based heuristic for cyclic structures. Comput Oper Res 33:23–51CrossRefGoogle Scholar
  45. Rosen JB (1960) The gradient projection method for nonlinear programming. Part I. linear constraints. SIAM J 22:181–217Google Scholar
  46. Rothfarb B, Frank H, Rosenbaum DM, Steiglitz K, Kleitman DJ (1970) Optimal design of offshore natural-gas pipeline systems. Oper Res 18:992–1020CrossRefGoogle Scholar
  47. Tussing AR, Barlow CC (1984) The natural gas industry: evolution, structure, and economics. Ballinger Publishing Company, Cambridge, MAGoogle Scholar
  48. US Department of Energy, Energy Information Administration (2008) International Energy Annual 2006, 25 September 2008Google Scholar
  49. Wattenbarger RA (1970) Maximizing seasonal withdrawal from gas storage reservoir. SPE J Petrol Technol 22:994–998Google Scholar
  50. Wolsey LA (1998) Integer programming. Wiley, New YorkMATHGoogle Scholar
  51. Worldwide Look at Reserves and Production (2008) Oil Gas J 106(48):22–23Google Scholar
  52. Wu S, Rios-Mercado RZ, Boyd EA, Scott LR (2000) Model relaxations for the fuel cost minimization of steady-state gas pipeline networks. Math Comput Model 31:197–220CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Qipeng P. Zheng
    • 1
  • Steffen Rebennack
    • 2
  • Niko A. Iliadis
    • 3
  • Panos M. Pardalos
    • 4
  1. 1.Department of Industrial & Systems Engineering, Center for Applied OptimizationUniversity of FloridaGainesvilleUSA
  2. 2.Division of Economics and BusinessColorado School of MinesGoldenUSA
  3. 3.EnerCoRD Energy Consulting, Research, DevelopmentAthensGreece
  4. 4.Department of Industrial and Systems Engineering, Center for Applied OptimizationUniversity of FloridaGainesvilleUSA

Personalised recommendations