On the Synchrony of Morphological and Molecular Signaling Events in Cell Migration

  • Justin Dauwels
  • Yuki Tsukada
  • Yuichi Sakumura
  • Shin Ishii
  • Kazuhiro Aoki
  • Takeshi Nakamura
  • Michiyuki Matsuda
  • François Vialatte
  • Andrzej Cichocki
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5506)

Abstract

This paper investigates the dynamics of cell migration, which is the movement of a cell towards a certain target area. More specifically, the objective is to analyze the causal interdependence between cellular-morphological events and molecular-signaling events. To this end, a novel data analysis method is developed: first the local morphological changes and molecular signaling events are determined by means of edge evolution tracking (EET), next the interdependence of those events is quantified through the method of stochastic event synchrony (SES).

The proposed method is applied to time-lapse fluorescence resonance energy transfer (FRET) images of Rac1 activity in motile HT1080 cells; the protein Rac1 is well known to induce filamentous structures that enable cells to migrate. Results show a significant delay between local Rac1 activity events and morphological events. This observation provides new insights into the dynamic relationship between cellular-morphological change and molecular-signaling of migrating cells, and may pave the way to novel biophysical models of cell migration.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lauffenburger, D.A., Horwitz, A.F.: Cell migration: a physically integrated molecular process. Cell 84, 359–369 (1996)CrossRefGoogle Scholar
  2. 2.
    Dormann, D., Weijer, C.J.: Imaging of cell migration. The EMBO Journal 25(15), 3480–3493 (2006)CrossRefGoogle Scholar
  3. 3.
    Pollard, T.D.: The cytoskeleton, cellular motility, and the reductionist agenda. Nature 422, 741–745 (2003)CrossRefGoogle Scholar
  4. 4.
    Gerlich, D., Mattes, J., Eils, R.: Quantitative motion analysis and visualization of cellular structures. Methods 29, 3–13 (2003)CrossRefGoogle Scholar
  5. 5.
    Tsukada, Y., Aoki, K., Nakamura, T., Sakumura, Y., Matsuda, M., Ishii, S.: Quantification of local morphodynamics and local GTPase activity by edge evolution tracking. PLoS Comput. Biol. 4(11), e1000223 (2008)CrossRefGoogle Scholar
  6. 6.
    Dauwels, J., Vialatte, F., Rutkowski, T., Cichocki, A.: Measuring neural synchrony by message passing. In: Advances in Neural Information Processing Systems 20. MIT Press, CambridgeGoogle Scholar
  7. 7.
    Rasheed, S., Nelson-Rees, W.A., Toth, E.M., Arnstein, P., Gardner, M.B.: Characterization of a newly derived human sarcoma cell line (HT-1080). Cancer 33, 1027–1033 (1974)CrossRefGoogle Scholar
  8. 8.
    Vialatte, F., Martin, C., Dubois, R., Haddad, J., Quenet, B., Gervais, R., Dreyfus, G.: A machine learning approach to the analysis of time-frequency maps, and its application to neural dynamics. Neural Networks 20, 194–209Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Justin Dauwels
    • 1
    • 2
    • 3
  • Yuki Tsukada
    • 1
    • 4
    • 6
  • Yuichi Sakumura
    • 4
    • 6
  • Shin Ishii
    • 4
    • 6
    • 5
  • Kazuhiro Aoki
    • 5
  • Takeshi Nakamura
    • 5
  • Michiyuki Matsuda
    • 5
  • François Vialatte
    • 3
  • Andrzej Cichocki
    • 3
  1. 1.These authors contributed equallyJapan
  2. 2.Massachusetts Institute of TechnologyCambridgeUSA
  3. 3.RIKEN Brain Science InstituteSaitamaJapan
  4. 4.Nara Institute of Science and Technology (NAIST)NaraJapan
  5. 5.Kyoto UniversityKyotoJapan
  6. 6.Institute for Bioinformatics Research and Development (BIRD), Japan Science and Technology Agency (JST)Japan

Personalised recommendations