Clustering of Spectral Patterns Based on EMD Components of EEG Channels with Applications to Neurophysiological Signals Separation

  • Tomasz M. Rutkowski
  • Andrzej Cichocki
  • Toshihisa Tanaka
  • Anca L. Ralescu
  • Danilo P. Mandic
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5506)

Abstract

The notion of information separation in electrophysiological recordings is discussed. Whereas this problem is not entirely new, a novel approach to separate muscular interference from brain electrical activity observed in form of EEG is presented. The EEG carries brain activity in form of neurophysiological components which are usually embedded in much higher in power electrical muscle activity components (EMG, EOG, etc.). A novel multichannel EEG analysis approach is proposed in order to discover representative components related to muscular activity which are not related to ongoing brain activity but carry common patterns resulting from non-brain related sources. The proposed adaptive decomposition approach is also able to separate signals occupying same frequency bands what is usually not possible with contemporary methods.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Joyce, C.A., Gorodnitsky, I.F., Kutas, M.: Automatic removal of eye movement and blink artifacts from eeg data using blind component separation. Psychophysiology 41(2), 313–325 (2004)CrossRefGoogle Scholar
  2. 2.
    Rutkowski, T.M., Cichocki, A., Ralescu, A.L., Mandic, D.P.: Emotional states estimation from multichannel EEG maps. In: Wang, R., Gu, F., Shen, E. (eds.) Advances in Cognitive Neurodynamics: Proceedings of the International Conference on Cognitive Neurodynamics 2007. Neuroscience, pp. 695–698. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  3. 3.
    Looney, D., Li, L., Rutkowski, T.M., Mandic, D.P., Cichocki, A.: Ocular artifacts removal from EEG using EMD. In: Wang, R., Gu, F., Shen, E. (eds.) Advances in Cognitive Neurodynamics: Proceedings of the International Conference on Cognitive Neurodynamics 2007, pp. 831–835. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  4. 4.
    Niedermeyer, E., Da Silva, F.L. (eds.): Electroencephalography: Basic Principles, Clinical Applications, and Related Fields, 5th edn. Lippincott Williams & Wilkins (2004)Google Scholar
  5. 5.
    Huang, N., Shen, Z., Long, S., Wu, M., Shih, H., Zheng, Q., Yen, N.C., Tung, C., Liu, H.: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 454(1971), 903–995 (1998)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Rutkowski, T.M., Cichocki, A., Mandic, D.P.: Information Fusion for Perceptual Feedback: A Brain Activity Sonification Approach. In: Signal Processing Techniques for Knowledge Extraction and Information Fusion. Signals and Communication, pp. 261–274. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  7. 7.
    Murtagh, F.: Multidimensional clustering algorithms. COMPSTAT Lectures 4 (1985)Google Scholar
  8. 8.
    R Development Core Team: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria (2008), http://www.R-project.org

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Tomasz M. Rutkowski
    • 1
  • Andrzej Cichocki
    • 1
  • Toshihisa Tanaka
    • 2
    • 1
  • Anca L. Ralescu
    • 3
  • Danilo P. Mandic
    • 4
  1. 1.RIKEN Brain Science Institute, Wako-shiSaitamaJapan
  2. 2.Tokyo University of Agriculture and TechnologyTokyoJapan
  3. 3.Computer Science DepartmentUniversity of CincinnatiOhioUSA
  4. 4.Department of Electrical and Electronic EngineeringImperial College LondonUK

Personalised recommendations