Incremental Principal Component Analysis Based on Adaptive Accumulation Ratio

  • Seiichi Ozawa
  • Kazuya Matsumoto
  • Shaoning Pang
  • Nikola Kasabov
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5506)

Abstract

We have proposed an online feature extraction method called Chunk Incremental Principal Component Analysis (Chunk IPCA) where a chunk of data is trained at a time to update an eigenspace model. In this paper, we propose an extended version of Chunk IPCA in which a proper threshold for the accumulation ratio is adaptively determined such that the highest classification accuracy is maintained for a validation data set. Whenever a new chunk of training data is given, the validation set is updated in an online fashion by using the k-means clustering or through the prototype selection based on the classification results. The experimental results show that the extended version of Chunk IPCA can determine a proper threshold on an ongoing basis, resulting in keeping higher classification accuracy than the original Chunk IPCA.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Oja, E., Karhunen, J.: On Stochastic Approximation of the Eigenvectors and Eigenvalues of the Expectation of a Random Matrix. J. Math. Analysis and Application 106, 69–84 (1985)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Sanger, T.D.: Optimal Unsupervised Learning in a Single-layer Linear Feedforward Neural Network. Neural Networks 2(6), 459–473 (1989)CrossRefGoogle Scholar
  3. 3.
    Chattejee, C., Kang, Z., Roychowdhury, V.: Algorithms for Accelerated Convergence of Adaptive PCA. IEEE Trans. on Neural Networks 11(2), 338–355 (2000)CrossRefGoogle Scholar
  4. 4.
    Weng, J., Zhang, Y., Hwang, W.-S.: Candid Covariance-free Incremental Principal Component Analysis. IEEE Trans. on Pattern Analysis and Machine Intelligence 25(8), 1034–1040 (2003)CrossRefGoogle Scholar
  5. 5.
    Pang, S., Ozawa, S., Kasabov, N.: Incremental Linear Discriminant Analysis for Classification of Data Streams. IEEE Trans. on Systems, Man, and Cybernetics, Part B 35(5), 905–914 (2005)CrossRefGoogle Scholar
  6. 6.
    Hall, P., Martin, R.: Incremental Eigenanalysis for Classification. In: Proc. of British Machine Vision Conference, vol. 1, pp. 286–295 (1998)Google Scholar
  7. 7.
    Ozawa, S., Pang, S., Kasabov, N.: A Modified Incremental Principal Component Analysis for On-line Learning of Feature Space and Classifier. In: Zhang, C., Guesgen, H.W., Yeap, W.-K. (eds.) PRICAI 2004. LNCS (LNAI), vol. 3157, pp. 231–240. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  8. 8.
    Ozawa, S., Toh, S.L., Abe, S., Pang, S., Kasabov, N.: Incremental Learning of Feature Space and Classifier for Face Recognition. Neural Networks 18(5-6), 575–584 (2005)CrossRefGoogle Scholar
  9. 9.
    Ozawa, S., Pang, S., Kasabov, N.: Incremental Learning of Chunk Data for On-line Pattern Classification Systems. IEEE Trans. on Neural Networks 19(6), 1061–1074 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Seiichi Ozawa
    • 1
  • Kazuya Matsumoto
    • 1
  • Shaoning Pang
    • 2
  • Nikola Kasabov
    • 2
  1. 1.Graduate School of EngineeringKobe UniversityKobeJapan
  2. 2.Knowledge Engineering & Discover Research InstituteAuckland University of TechnologyAucklandNew Zealand

Personalised recommendations