A Novel Incremental Linear Discriminant Analysis for Multitask Pattern Recognition Problems

  • Masayuki Hisada
  • Seiichi Ozawa
  • Kau Zhang
  • Shaoning Pang
  • Nikola Kasabov
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5506)

Abstract

In this paper, we propose a new incremental linear discriminant analysis (ILDA) for multitask pattern recognition (MTPR) problems in which training samples of a specific recognition task are given one after another for a certain period of time and the task is switched to another related task in turn. The Pang et al.’s ILDA is extended such that a discriminant space of the current task is augmented with effective discriminant vectors that are selected from other related tasks based on the class separability. We call the selection and augmentation of such discriminant vectors knowledge transfer of feature subspaces. In the experiments, the proposed ILDA is evaluated for the four MTPR problems, each of which consists of three multi-class recognition tasks. The results demonstrate that the proposed ILDA outperforms the ILDA without the knowledge transfer with regard to both the class separability and recognition accuracy. From the experimental results, we confirm that the proposed knowledge transfer mechanism works well to construct effective discriminant feature spaces incrementally.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Caruana, R.: Multitask Learning. Machine Learning 28, 41–75 (1997)CrossRefGoogle Scholar
  2. 2.
    Silver, D.L., Mercer, R.E.: Selective Function Transfer: Inductive Bias from Related Task. In: Proc. of IASTED Int. Conf. on AI and Soft Computing, pp. 182–189 (2001)Google Scholar
  3. 3.
    Argyriou, A., Evgeniou, T., Pontil, M.: Multi-Task Feature Learning. In: Advances in Neural Information Processing Systems, vol. 19, pp. 41–48. MIT Press, Cambridge (2007)Google Scholar
  4. 4.
    Ozawa, S., Roy, A.: Incremental Learning for Multitask Pattern Recognition Problems. In: Proc. of 17th Int. Conf. on Machine Learning and Applications (in press)Google Scholar
  5. 5.
    Pang, S., Ozawa, S., Kasabov, N.: Incremental Linear Discriminant Analysis for Classification of Data Streams. IEEE Trans. on SMC - Part B 35(5), 905–914 (2005)Google Scholar
  6. 6.
    Xiang, C., Fan, X.A., Lee, T.H.: Face Recognition Using Recursive Fisher Linear Discriminant. IEEE Trans. on Image Processing 15(8), 2097–2105 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Masayuki Hisada
    • 1
  • Seiichi Ozawa
    • 1
  • Kau Zhang
    • 1
  • Shaoning Pang
    • 2
  • Nikola Kasabov
    • 2
  1. 1.Graduate School of EngineeringKobe UniversityKobeJapan
  2. 2.Knowledge Engineering & Discover Research InstituteAuckland University of TechnologyAucklandNew Zealand

Personalised recommendations