Implementation of Binary Particle Swarm Optimization for DNA Sequence Design

  • Noor Khafifah Khalid
  • Zuwairie Ibrahim
  • Tri Basuki Kurniawan
  • Marzuki Khalid
  • Andries P. Engelbrecht
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5518)

Abstract

In DNA based computation and DNA nanotechnology, the design of good DNA sequences has turned out to be an essential problem and one of the most practical and important research topics. Basically, the DNA sequence design problem is a multi-objective problem, and it can be evaluated using four objective functions, namely, H measure , similarity, continuity, andhairpin. There are several ways to solve a multi-objective problem, such as value function method, weighted sum method, and using evolutionary algorithms. However, in this paper, common method has been used, namely weighted sum method to convert DNA sequence design problem into single objective problem. Binary particle swarm optimization (BinPSO) is proposed to minimize the objective in the problem, subjected to two constraints: melting temperature and GC content . Based on experiments and researches done, 20 particles are used in the implementation of the optimization process, where the average values and the standard deviation for 100 runs are shown along with comparison to other existing methods. The results obtained verified that BinPSO can suitably solve DNA sequence design problem using the proposed method and model, comparatively better than other approaches.

Keywords

binary particle swarm optimization DNA sequence design optimization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arita, M., Nishikawa, A., Hagiya, M., Komiya, K., Gouzu, H., Sakamoto, K.: Improving sequence design for DNA computing. In: Proc. Genetic Evol. Comput. Conf. (GECCO), pp. 875–882 (2000)Google Scholar
  2. 2.
    Reece, R. J.: Analysis of Genes and Genomes. Wiley, Chichester (2004)Google Scholar
  3. 3.
    Adleman, L.: Molecular computation of solutions to combinatorial problems. Science 266, 1021–1024 (1998)CrossRefGoogle Scholar
  4. 4.
    Kashiwamura, S., Kameda, A., Yamamoto, M., Ohuchi, A.: Two-step Search for DNA Se-quence Design. In: Proceedings of the 2003 International Technical Conference on Circuits/Systems, Computers and Communications (ITC-CSCC 2003), pp. 1815–1818 (2003)Google Scholar
  5. 5.
    Arita, M., Kobayashi, S.: DNA sequence design using templates. New Generation Comput. 20, 263–277 (2002)CrossRefMATHGoogle Scholar
  6. 6.
    Kobayashi, S., Kondo, T.: On Template Method for DNA Sequence Design. In: Preliminary Proceeding of 8th International Meeting on DNA Based Computers, pp. 115–124 (2002)Google Scholar
  7. 7.
    Kennedy, J., Eberhart, R.C.: A discrete binary version of the particle swarm algorithm. In: Proc. Conf. Systems, Piscataway, NJ, pp. 4104–4108 (1997)Google Scholar
  8. 8.
    Kalyanmoy, D.: Multi-objective Evolutionary Optimization, p. 50. John Wiley & Sons, Chichester (2001)MATHGoogle Scholar
  9. 9.
    Seeman, N.C., Kallenbach, N.R.: Design of immobile Nucleic Acid Junctions. Biophysical Journal 44, 201–209 (1983)CrossRefGoogle Scholar
  10. 10.
    Seeman, N.C.: De Novo Design of Sequences for Nucleic Acid Structural Engineering. Journal of Biomolecular Structure & Dynamics 8(3), 573–581 (1990)CrossRefGoogle Scholar
  11. 11.
    Baum, E.B.: DNA Sequences Useful for Computation (unpublished) (1996), http://www.neci.nj.nec.com/homepages/eric/seq.ps
  12. 12.
    Hartemink, A.J., Gifford, D.K., Khodor, J.: Automated Constraint Based Nucleotide Sequence Selection for DNA Computation. In: Proc. 4th DIMACS Workshop DNA Based Computer, pp. 227–235 (1998)Google Scholar
  13. 13.
    Penchovsky, R., Ackermann, J.: DNA library design for molecular computation. J. Comput. Bio. 10(2), 215–229 (2003)CrossRefGoogle Scholar
  14. 14.
    Tanaka, F., Naktsugawa, M., Yamamoto, M., Shiba, T., Ohuchi, A.: Toward a general-purpose sequence design system in DNA computing. In: Proc. Congr. Evil. Comput (CEC), pp. 73–78 (2002)Google Scholar
  15. 15.
    Kirkpatrick, S., Gelatt Jr., C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220, 671–680 (1983)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Marathe, A., Condon, A.E., Corn, R.M.: On Combinatorial DNA Word Design. In: Proceedings of the 5th International Meeting on DNA Based Computers (1999)Google Scholar
  17. 17.
    Feldkamp, U., Saghafi, S., Banzhaf, W., Rauhe, H.: DNA sequence generator–A program for the construction of DNA sequences. In: Proc. 7th Int. Workshop DNA Based Computer, pp. 179–188 (2001)Google Scholar
  18. 18.
    Frutos, A.G., Thiel, A.J., Condon, A.E., Smith, L.M., Corn, R.M.: DNA computing at surfaces: Four base mismatch word designs. In: Proc. 3rd DIMACS Workshop DNA Based Computer, p. 238 (1997)Google Scholar
  19. 19.
    Deaton, R., Murphy, R.C., Garzon, M., Franceschetti, D.T., Stevens Jr., S.E.: Good Encod-ings for DNA−based Solutions to Combinatorial Problems. In: Proceedings of the Second Annual Meeting on DNA Based Computers, held at Princeton University, pp. 159–171. Princeton University Press, Princeton (1996)Google Scholar
  20. 20.
    Deaton, R., Murphy, R.C., Rose, J.A., Garzon, M., Franceschetti, D.T., Stevens Jr., S.E.: Genetic Search for Reliable Encodings for DNA−based Computation. In: First Conference on Genetic Programming (1996)Google Scholar
  21. 21.
    Shin, S.Y., Lee, I.H., Kim, D., Zhang, B.T.: Multi-objective evolutionary optimization of DNA sequences for reliable DNA computing. IEEE Transaction on Evolutionary Computation 9(2), 143–158 (2005)CrossRefGoogle Scholar
  22. 22.
    Guangzhao, C., Yunyun, N., Yangfeng, W., Xuncai, Z., Linqiang, P.: A New approach Based on PSO algorithm to Find Good Computational Encoding Sequences. Progress in Natural Science 17(6), 712–716 (2007)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Zhou, S., Zhang, Q., Zhao, J., Li, J.: DNA Encoding Based on Multi-objective Particle Swarm. Journal of Computational and Theoretical Nanoscience 4, 1249–1252 (2007)CrossRefGoogle Scholar
  24. 24.
    Kurniawan, T.B., Khalid, N.K., Ibrahim, Z., Khalid, M., Middendorf, M.: An Ant Colony System for DNA Sequence Design Based On Thermodynamics. In: Proceedings of the Fourth IASTED International Conference Advances in Computer Science and Technology (ACST 2008), Langkawi, Malaysia, pp. 144–149 (2008)Google Scholar
  25. 25.
    Kennedy, J., Eberhart, R.C.: Particle Swarm Optimization. In: Proceeding of IEEE Interna-tional Conference on Neural Networks, Perth, Australia, pp. 1942–1948 (1995)Google Scholar
  26. 26.
    Santa Lucia Jr., J.: A unified view of polymer, dumbbell, and oligonucleotide DNA nearest-neighbour thermodynamics. Proc. Nat. Acad. Sci. USA 95, 1460–1465 (1998)CrossRefGoogle Scholar
  27. 27.
    Eberhart, R.C., Shi, Y.: Comparing Inertia Weights and Constriction Factors in Particle Swarm Optimization. In: Proceedings of IEEE congress evolutionary computation, San Diego, CA, pp. 84–88 (2000)Google Scholar
  28. 28.
    van der Bergh, F., Engelbrecht, A.P.: An analysis of particle swarm optimizers, PhD thesis, Department of Computer Science, University of Pretoria, South Africa (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Noor Khafifah Khalid
    • 1
  • Zuwairie Ibrahim
    • 1
  • Tri Basuki Kurniawan
    • 1
  • Marzuki Khalid
    • 1
  • Andries P. Engelbrecht
    • 2
  1. 1.Faculty of Electrical EngineeringUniversiti Teknologi MalaysiaSkudaiMalaysia
  2. 2.Department of Computer ScienceUniversity of PretoriaSouth Africa

Personalised recommendations