A Distributed Intelligent Monitoring System Applied to a Micro-scale Turning Process

  • Raúl M. del Toro
  • Rodolfo E. Haber
  • Michael Schmittdiel
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5518)


In this paper, a distributed intelligent monitoring system for a micro-scale turning process is presented. A fuzzy model, running on a distributed architecture, helps on decision-making about the imbalance degree of the spindle in the ultra-precision diamond turning process. The suitability of a three-input/single-output fuzzy model is assessed directly on an ultra-precision lathe, verifying it effectiveness. A brief explanation of the single point diamond turning process and problems caused by the vibrations generated due to the imbalance of the spindle, are also presented. Real-time application of the fuzzy decision making, as part of a networked distributed monitoring system, assists the operator when manufacturing complex parts.


fuzzy modeling intelligent distributed networked monitoring system ultra-precision diamond turning 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Schmittdiel, M.C., Haber, R.E., Escribano, Á., Escribano, J.: The State-Of-The-Art In Nano-Turning. In: International Manufacturing Science & Engineering, MSEC2007. ASME, Atlanta (2007)Google Scholar
  2. 2.
    Cheung, C.F., Lee, W.B.: Characterisation of nanosurface generation in single-point diamond turning. Int. J. Mach. Tools Manuf. 41, 851–875 (2001)CrossRefGoogle Scholar
  3. 3.
    Cheung, C.F., Lee, W.B.: A multi-spectrum analysis of surface roughness formation in ultra-precision machining. Precision Engineering 24, 77–87 (2000)CrossRefGoogle Scholar
  4. 4.
    Nandi, A.K.: TSK-type FLC using a combined LR and GA: Surface roughness prediction in ultraprecision turning. Journal of Materials Processing Technology 178, 200–210 (2006)CrossRefGoogle Scholar
  5. 5.
    Haber, R.E., Cantillo, K., Jiménez, J.E.: Networked sensing for high-speed machining processes based on CORBA. Sensors and Actuators, A: Physical 119, 418–426 (2005)CrossRefGoogle Scholar
  6. 6.
    Haber-Guerra, R.E., Haber-Haber, R., Andrés, D.M., Palomar, A.A.: Networked fuzzy control system for a high-performance drilling process. Journal of Manufacturing Science and Engineering, Transactions of the ASME 130, 0310091–0310096 (2008)CrossRefGoogle Scholar
  7. 7.
    Cheung, C.F., Lee, W.B.: Surface Generation in Ultra-precision Diamond Turning: Modelling and Practices. Professional Engineering Publishing Limited, London (2003)Google Scholar
  8. 8.
    Roblee, J.: Factors Affecting Surface Finish in Diamond Turning, p. 6. Precitech, Inc. (2007)Google Scholar
  9. 9.
    Ulmer Jr., B.C., Kurfess, T.R.: Integration of an open architecture controller with a diamond turning machine. Mechatronics 9, 349–361 (1999)CrossRefGoogle Scholar
  10. 10.
    Thomson, A.W.: Theory of Vibration With Applications. Taylor & Francis, Abington (1996)Google Scholar
  11. 11.
    del Toro, R.M., Haber, R.E., Schmittdiel, M.C.: Procedure and system for real-time detection of unbalance in a high-precision rotary mechanism. Spain Patent 200802614 (2008); patent pendingGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Raúl M. del Toro
    • 1
  • Rodolfo E. Haber
    • 1
    • 2
  • Michael Schmittdiel
    • 1
  1. 1.Instituto de Automática Industrial (CSIC)MadridSpain
  2. 2.Escuela Politécnica SuperiorCiudad Universitaria de CantoblancoMadridSpain

Personalised recommendations