ZARAMIT: A System for the Evolutionary Study of Human Mitochondrial DNA

  • Roberto Blanco
  • Elvira Mayordomo
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5518)


ZARAMIT is an information system capable of fully automated phylogeny reconstruction. Methods have been tailored to mitochondrial DNA sequences, with focus on subproblem partitioning. We have built exhaustive human mitochondrial phylogenies (approximately 5500 sequences) and detected problems in existing haplogroup hierarchies through data-driven classification.

Information on the project can be found on


Mitochondrial Genome Algorithm Engineering Incremental Tree Tree Skeleton Tree Reconstruction Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anderson, S., et al.: Sequence and organization of the human mitochondrial genome. Nature 290, 457–465 (1981)CrossRefGoogle Scholar
  2. 2.
    Ruiz-Pesini, E., et al.: Effects of purifying and adaptive selection on regional variation in human mtDNA. Science 303, 223–226 (2004)CrossRefGoogle Scholar
  3. 3.
    Felsenstein, J.: Inferring Phylogenies. Sinauer (2003)Google Scholar
  4. 4.
    Nei, M., Kumar, S.: Molecular Evolution and Phylogenetics. Oxford University Press, Oxford (2000)Google Scholar
  5. 5.
    Foulds, L.R., Graham, R.L.: The Steiner problem in phylogeny is NP-complete. Advances in Applied Mathematics 3, 43–49 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Day, W.H.E.: Computational complexity of inferring phylogenies from dissimilarity matrices. Bulletin of Mathematical Biology 49, 461–467 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Chor, B., Tuller, T.: Maximum likelihood of evolutionary trees: hardness and approximation. Bioinformatics 21, i97–i106 (2005)CrossRefzbMATHGoogle Scholar
  8. 8.
    Ruiz-Pesini, E., et al.: An enhanced MITOMAP with a global mtDNA mutational phylogeny. Nucleic Acids Research 35, D823–D828 (2007)CrossRefGoogle Scholar
  9. 9.
    van Oven, M., Kayser, M.: Updated comprehensive phylogenetic tree of global human mitochondrial DNA variation. Human Mutation 29, E386–E394 (2008)Google Scholar
  10. 10.
    Blanco, R.: Definición y prototipo de herramienta de análisis filogenético para el ADN mitocondrial humano. Master’s thesis, Centro Politécnico Superior (Universidad de Zaragoza) (2008)Google Scholar
  11. 11.
    Li, M., et al.: An information based sequence distance and its application to whole mitochondrial genome phylogeny. Bioinformatics 17, 149–154 (2001)CrossRefGoogle Scholar
  12. 12.
    Li, M., et al.: The similarity metric. IEEE Transactions on Information Theory 50, 3250–3264 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Urcola, P.: Algoritmos de compresión para secuencias biológicas y su aplicación en árboles filogénicos construidos a partir de ADN mitocondrial. Master’s thesis, Centro Politécnico Superior (Universidad de Zaragoza) (2006)Google Scholar
  14. 14.
    Moret, B.M.E., et al.: High-performance algorithm engineering for computational phylogenetics. The Journal of Supercomputing 22, 99–111 (2002)CrossRefzbMATHGoogle Scholar
  15. 15.
    Gramm, J., et al.: Fixed-parameter algorithms in phylogenetics. The Computer Journal 51, 79–101 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Roberto Blanco
    • 1
  • Elvira Mayordomo
    • 1
  1. 1.Departamento de Informática e Ingeniería de Sistemas Instituto de Investigación en Ingeniería de Aragón (I3A)Universidad de Zaragoza. María de Luna 1ZaragozaSpain

Personalised recommendations