CBR System with Reinforce in the Revision Phase for the Classification of CLL Leukemia
Conference paper
- 1.9k Downloads
Abstract
Microarray technology allows measuring the expression levels of thousands of genes providing huge quantities of data to be analyzed. This fact makes fundamental the use of computational methods as well as new intelligent algorithms. This paper presents a Case-based reasoning (CBR) system for automatic classification of microarray data. The CBR system incorporates novel algorithms for data classification and knowledge discovery. The system has been tested in a case study and the results obtained are presented.
Keywords
Case-based Reasoning CLL luekemia HG U133Preview
Unable to display preview. Download preview PDF.
References
- 1.Lina, K.S., Chien, C.F.: Cluster analysis of genome-wide expression data for feature extraction. Expert Systems with Applications 36(2-2), 3327–3335 (2009)CrossRefGoogle Scholar
- 2.Stadlera, Z.K., Come, S.E.: Review of gene-expression profiling and its clinical use in breast cancer. Critical Reviews in Oncology/Hematology 69(1), 1–11 (2009)CrossRefGoogle Scholar
- 3.Affymetrix. GeneChip® Human Genome U133 Arrays, http://www.affymetrix.com/support/technical/datasheets/hgu133arrays_datasheet.pdf
- 4.Sawa, T., Ohno-Machado, L.: A neural network based similarity index for clustering DNA microarray data. Computers in Biology and Medicine 33(1), 1–15 (2003)CrossRefGoogle Scholar
- 5.Bianchia, D., Calogero, R., Tirozzi, B.: Kohonen neural networks and genetic classification. Mathematical and Computer Modelling 45(1-2), 34–60 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
- 6.Baladandayuthapani, V., Ray, S., Mallick, B.K.: Bayesian Methods for DNA Microarray Data Analysis. Handbook of Statistics 25(1), 713–742 (2005)MathSciNetCrossRefGoogle Scholar
- 7.Avogadri, R., Valentini, G.: Fuzzy ensemble clustering based on random projections for DNA microarray data analysis. Artificial Intelligence in Medicine (in press)Google Scholar
- 8.Kolodner, J.: Case-Based Reasoning. Morgan Kaufmann, San Francisco (1993)CrossRefzbMATHGoogle Scholar
- 9.Riverola, F., Díaz, F., Corchado, J.M.: Gene-CBR: a case-based reasoning tool for cancer diagnosis using microarray datasets. Computational Intelligence 22(3-4), 254–268 (2006)MathSciNetCrossRefGoogle Scholar
- 10.Rodríguez, S., De Paz, J.F., Bajo, J., Corchado, J.M.: Applying CBR Systems to Microarray Data Classification. In: IWPACBB 2008. Advances in Soft Computing, vol. 49, pp. 102–111 (2008)Google Scholar
- 11.Corchado, J.M., De Paz, J.F., Rodríguez, S., Bajo, J.: Model of Experts for Decision Support in the Diagnosis of Leukemia Patients. Artificial Intelligence in Medicine (in press)Google Scholar
- 12.Furao, S., Ogura, T., Hasegawa, O.: An enhanced self-organizing incremental neural network for online unsupervised learning. Neural Networks 20(8), 893–903 (2007)CrossRefzbMATHGoogle Scholar
- 13.Kaufman, L., Rousseeuw, P.J.: Finding Groups in Data: An Introduction to Cluster Analysis. Wiley, New York (1990)CrossRefzbMATHGoogle Scholar
- 14.Borg, I., Groenen, P.: Modern multidimensional scaling theory and applications. Springer, New York (1997)CrossRefzbMATHGoogle Scholar
- 15.Avogadri, R., Valentini, G.: The Corresponding Author and Giorgio Valentini Fuzzy ensemble clustering based on random projections for DNA microarray data analysis. Artificial Intelligence in Medicine (in press)Google Scholar
- 16.Vogiatzis, D., Tsapatsoulis, N.: Active learning for microarray data. International Journal of Approximate Reasoning 47(1), 85–96 (2008)CrossRefzbMATHGoogle Scholar
- 17.Foon, K.A., Rai, K.L., Gale, R.P.: Chronic lymphocytic leukemia: new insights into biology and therapy. Annals of Internal Medicine 113(7), 525–539 (1990)CrossRefGoogle Scholar
- 18.Chronic Lymphocytic Leukemia. The leukemia and lymphoma society (2008), http://www.leukemia-lymphoma.org/all_page.adp?item_id=7059
- 19.Jurečkováa, J., Picek, J.: Shapiro–Wilk type test of normality under nuisance regression and scale. Computational Statistics & Data Analysis 51(10), 5184–5191 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
- 20.Yang, T.Y.: Efficient multi-class cancer diagnosis algorithm, using a global similarity pattern. Computational Statistics & Data Analysis (in press)Google Scholar
Copyright information
© Springer-Verlag Berlin Heidelberg 2009