Advertisement

CBR System with Reinforce in the Revision Phase for the Classification of CLL Leukemia

  • Juan F. De Paz
  • Sara Rodríguez
  • Javier Bajo
  • Juan M. Corchado
Conference paper
  • 1.9k Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5518)

Abstract

Microarray technology allows measuring the expression levels of thousands of genes providing huge quantities of data to be analyzed. This fact makes fundamental the use of computational methods as well as new intelligent algorithms. This paper presents a Case-based reasoning (CBR) system for automatic classification of microarray data. The CBR system incorporates novel algorithms for data classification and knowledge discovery. The system has been tested in a case study and the results obtained are presented.

Keywords

Case-based Reasoning CLL luekemia HG U133 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lina, K.S., Chien, C.F.: Cluster analysis of genome-wide expression data for feature extraction. Expert Systems with Applications 36(2-2), 3327–3335 (2009)CrossRefGoogle Scholar
  2. 2.
    Stadlera, Z.K., Come, S.E.: Review of gene-expression profiling and its clinical use in breast cancer. Critical Reviews in Oncology/Hematology 69(1), 1–11 (2009)CrossRefGoogle Scholar
  3. 3.
  4. 4.
    Sawa, T., Ohno-Machado, L.: A neural network based similarity index for clustering DNA microarray data. Computers in Biology and Medicine 33(1), 1–15 (2003)CrossRefGoogle Scholar
  5. 5.
    Bianchia, D., Calogero, R., Tirozzi, B.: Kohonen neural networks and genetic classification. Mathematical and Computer Modelling 45(1-2), 34–60 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Baladandayuthapani, V., Ray, S., Mallick, B.K.: Bayesian Methods for DNA Microarray Data Analysis. Handbook of Statistics 25(1), 713–742 (2005)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Avogadri, R., Valentini, G.: Fuzzy ensemble clustering based on random projections for DNA microarray data analysis. Artificial Intelligence in Medicine (in press)Google Scholar
  8. 8.
    Kolodner, J.: Case-Based Reasoning. Morgan Kaufmann, San Francisco (1993)CrossRefzbMATHGoogle Scholar
  9. 9.
    Riverola, F., Díaz, F., Corchado, J.M.: Gene-CBR: a case-based reasoning tool for cancer diagnosis using microarray datasets. Computational Intelligence 22(3-4), 254–268 (2006)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Rodríguez, S., De Paz, J.F., Bajo, J., Corchado, J.M.: Applying CBR Systems to Microarray Data Classification. In: IWPACBB 2008. Advances in Soft Computing, vol. 49, pp. 102–111 (2008)Google Scholar
  11. 11.
    Corchado, J.M., De Paz, J.F., Rodríguez, S., Bajo, J.: Model of Experts for Decision Support in the Diagnosis of Leukemia Patients. Artificial Intelligence in Medicine (in press)Google Scholar
  12. 12.
    Furao, S., Ogura, T., Hasegawa, O.: An enhanced self-organizing incremental neural network for online unsupervised learning. Neural Networks 20(8), 893–903 (2007)CrossRefzbMATHGoogle Scholar
  13. 13.
    Kaufman, L., Rousseeuw, P.J.: Finding Groups in Data: An Introduction to Cluster Analysis. Wiley, New York (1990)CrossRefzbMATHGoogle Scholar
  14. 14.
    Borg, I., Groenen, P.: Modern multidimensional scaling theory and applications. Springer, New York (1997)CrossRefzbMATHGoogle Scholar
  15. 15.
    Avogadri, R., Valentini, G.: The Corresponding Author and Giorgio Valentini Fuzzy ensemble clustering based on random projections for DNA microarray data analysis. Artificial Intelligence in Medicine (in press)Google Scholar
  16. 16.
    Vogiatzis, D., Tsapatsoulis, N.: Active learning for microarray data. International Journal of Approximate Reasoning 47(1), 85–96 (2008)CrossRefzbMATHGoogle Scholar
  17. 17.
    Foon, K.A., Rai, K.L., Gale, R.P.: Chronic lymphocytic leukemia: new insights into biology and therapy. Annals of Internal Medicine 113(7), 525–539 (1990)CrossRefGoogle Scholar
  18. 18.
    Chronic Lymphocytic Leukemia. The leukemia and lymphoma society (2008), http://www.leukemia-lymphoma.org/all_page.adp?item_id=7059
  19. 19.
    Jurečkováa, J., Picek, J.: Shapiro–Wilk type test of normality under nuisance regression and scale. Computational Statistics & Data Analysis 51(10), 5184–5191 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Yang, T.Y.: Efficient multi-class cancer diagnosis algorithm, using a global similarity pattern. Computational Statistics & Data Analysis (in press)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Juan F. De Paz
    • 1
  • Sara Rodríguez
    • 1
  • Javier Bajo
    • 1
  • Juan M. Corchado
    • 1
  1. 1.Departamento de Informática y AutomáticaUniversidad de SalamancaSalamancaEspaña

Personalised recommendations