GREAT: Gene Regulation EvAluation Tool

  • Catia Machado
  • Hugo Bastos
  • Francisco Couto
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5518)

Abstract

Our understanding of biological systems is highly dependent on the study of the mechanisms that regulate genetic expression. In this paper we present a tool to evaluate scientific papers that potentially describe Saccharomyces cerevisiae gene regulations, following the identification of transcription factors in abstracts using text mining techniques. GREAT evaluates the probability of a given gene-transcription factor pair corresponding to a gene regulation based on data retrieved from public biological databases.

Keywords

Gene Ontology gene regulations Saccharomyces cerevisiae text mining 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rebholz-Schuhmmann, D., Kirsch, H., Couto, F.: Facts From Text - Is Text Mining Ready to Deliver? PLoS. Biol. 3, e65 (2005)Google Scholar
  2. 2.
    Teixeira, M.C., et al.: The YEASTRACT Database: a Tool for the Analysis of Transcription Regulatory Associations in Saccharomyces cerevisiae. Nucl. Acids Res. 34, D446–D451 (2006)CrossRefGoogle Scholar
  3. 3.
    Sayers, E.W., et al.: Database Resources of the National Center For Biotechnology Information. Nucl. Acids Res. 37, D5–D15 (2009)CrossRefGoogle Scholar
  4. 4.
    Ashburner, M., et al.: Gene Ontology: Tool for the Unification of Biology. Nature Genetics 25, 25–29 (2000)CrossRefGoogle Scholar
  5. 5.
    Barrel, D., et al.: The GOA Database in 2009 - An Integrated Gene Ontology Annotation Resource. Nucl. Acids Res. 37, D396–D403 (2009)CrossRefGoogle Scholar
  6. 6.
    McCallum, A.K.: Bow: A Toolkit For Statistical Language Modelling, Text Retrieval, Classification and Clustering (1996), http://www.cs.cmu.edu/~mccallum/bow
  7. 7.
    Breiman, L., Friedman, J., Stone, C.J., Olshen, R.A.: Classification and Regression Trees. Chapman & Hall, USA (1984)MATHGoogle Scholar
  8. 8.
    Lord, P., Stevens, R., Brass, A., Goble, C.: Investigating Semantic Similarity Measures Across the Gene Ontology: The Relationship Between Sequence and Annotation. Bioinformatics 19, 1275–1283 (2003)CrossRefGoogle Scholar
  9. 9.
    Pesquita, C., et al.: Metrics for GO Based Protein Semantic Similarity: a Systematic Evaluation. BMC Bioinformatics (suppl. 5), S4 (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Catia Machado
    • 1
  • Hugo Bastos
    • 1
  • Francisco Couto
    • 1
  1. 1.Department of Informatics, Faculty of SciencesUniversity of LisbonLisbonPortugal

Personalised recommendations