Impact of Frequency Selection on LCD Screens for SSVEP Based Brain-Computer Interfaces

  • Ivan Volosyak
  • Hubert Cecotti
  • Axel Gräser
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5517)


In this work, the high impact of appropriate selection of visual stimuli on liquid crystal displays (LCDs) used for the brain-computer interfaces (BCIs) based on the Steady-State Visual Evoked Potentials (SSVEPs) has been confirmed. The number of suitable frequencies on the standard LCD monitor is limited due to the vertical refresh rate of 60Hz and the number of simultaneously used stimuli. Two sets of frequencies have been compared among each other during the on-line spelling task with the Bremen-BCI system in the study with 10 healthy subjects. This work is meaningful for the practical design of LCD based BCIs. In this study, appropriate selection of visual stimuli results in a 40% change in the BCI literacy under otherwise equal conditions.


BCI (Brain-Computer Interface) SSVEP (Steady-State Visual Evoked Potential) frequency selection LCD visual stimuli 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Berger, T.W., Chapin, J.K., Gerhardt, G.A., McFarland, D.J., et al.: Brain-Computer Interfaces: An international assessment of research and development trends. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  2. 2.
    Dornhege, G., Sejnowski, T.J.: Toward Brain Computer Interfacing. MIT Press, Cambridge (2007)Google Scholar
  3. 3.
    Wolpaw, J.R., Birbaumer, N., McFarland, D.J., Pfurtscheller, G., Vaughan, T.M.: Brain-computer interfaces for communication and control. J. Clin. Neurophysiol. 113(6), 767–791 (2002)CrossRefGoogle Scholar
  4. 4.
    Herrmann, C.S.: Human EEG responses to 1-100 Hz flicker: resonance phenomena in visual cortex and their potential correlation to cognitive phenomena. Exp. Brain Res. 137(3-4), 346–353 (2001)CrossRefGoogle Scholar
  5. 5.
    Gao, X., Xu, D., Cheng, M., Gao, S.: A BCI-based environmental controller for the motion-disabled. J. Neural Syst. Rehabil. Eng. 11(2), 137–140 (2003)CrossRefGoogle Scholar
  6. 6.
    Friman, O., Volosyak, I., Gräser, A.: Multiple channel detection of steady-state visual evoked potentials for brain-computer interfaces. J. of Biomed. Eng. 54(4), 742–750 (2007)Google Scholar
  7. 7.
    Middendorf, M., McMillan, G., Calhoun, G., Jones, K.S.: Brain-Computer Interfaces based on the Steady-State Visual Evoked response. J. Rehab Eng. 8(2), 211–214 (2000)Google Scholar
  8. 8.
    Wang, Y., Gao, X., Hong, B., Jia, C., Gao, S.: Brain-Computer Interfaces based on visual evoked potentials. J. Med. Biol. Mag. 27(5), 64–71 (2008)Google Scholar
  9. 9.
    Allison, B., Volosyak, I., Lüth, T., Valbuena, D., et al.: BCI Demographics: How many (and what kinds of) people can use an SSVEP BCI? In: Proceedings of the 4th International Brain-computer Interface Workshop and Training Course, Graz, Austria, pp. 333–338 (2008)Google Scholar
  10. 10.
    Valbuena, D., Cyriacks, M., Friman, O., Volosyak, I., Gräser, A.: Brain-Computer Interface for high-level control of rehabilitation robotic systems. In: Proc. IEEE ICORR 2007, Noordwijk, The Netherlands, pp. 619–625 (2007)Google Scholar
  11. 11.
    Wu, Z., Lai, Y., Xia, Y., Wu, D., Yao, D.: Stimulator selection in SSVEP-based BCI. J. Medical Engineering and Physics 30(8), 1079–1088 (2008)CrossRefGoogle Scholar
  12. 12.
    Müller-Putz, G.R., Scherer, R., Brauneis, C., Pfurtscheller, G.: Steady-state visual evoked potential (SSVEP)-based communication: impact of harmonic frequency components. J. Neural Eng. 2(4), 123–130 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Ivan Volosyak
    • 1
  • Hubert Cecotti
    • 1
  • Axel Gräser
    • 1
  1. 1.Institute of Automation (IAT)University of BremenBremenGermany

Personalised recommendations