Advertisement

A Preliminar Analysis of CO2RBFN in Imbalanced Problems

  • M. D. Pérez-Godoy
  • A. J. Rivera
  • A. Fernández
  • M. J. del Jesus
  • F. Herrera
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5517)

Abstract

In many real classification problems the data are imbalanced, i.e., the number of instances for some classes are much higher than that of the other classes. Solving a classification task using such an imbalanced data-set is difficult due to the bias of the training towards the majority classes. The aim of this contribution is to analyse the performance of CO2RBFN, a cooperative-competitive evolutionary model for the design of RBFNs applied to classification problems on imbalanced domains and to study the cooperation of a well known preprocessing method, the “Synthetic Minority Over-sampling Technique” (SMOTE) with our algorithm. The good performance of CO2RBFN is shown through an experimental study carried out over a large collection of imbalanced data-sets.

Keywords

Neural Networks Radial Basis Functions Genetic Algorithms Imbalanced Data-Sets 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alejo, R., García, V., Sotoca, J.M., Mollineda, R.A., Sánchez, J.S.: Improving the performance of the RBF neural networks trained with imbalanced samples. In: Sandoval, F., Prieto, A.G., Cabestany, J., Graña, M. (eds.) IWANN 2007. LNCS, vol. 4507, pp. 162–169. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  2. 2.
    Al-Haddad, L., Morris, C.W., Boddy, L.: Training radial basis function neural networks: effects of training set size and imbalanced training sets. Journal of Microbiological Methods 43, 33–44 (2000)CrossRefGoogle Scholar
  3. 3.
    Barandela, R., Sánchez, J.S., García, V., Rangel, E.: Strategies for learning in class imbalance problems. Pattern Recognition 36(3), 849–851 (2003)CrossRefGoogle Scholar
  4. 4.
    Batista, G.E.A.P.A., Prati, R.C., Monard, M.C.: A study of the behaviour of several methods for balancing machine learning training data. SIGKDD Explorations 6(1), 20–29 (2004)CrossRefGoogle Scholar
  5. 5.
    Broomhead, D., Lowe, D.: Multivariable functional interpolation and adaptive networks. Complex System 2, 321–355 (1988)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Buchtala, O., Klimek, M., Sick, B.: Evolutionary optimization of radial basis function classifiers for data mining applications. IEEE T. Syst. Man Cy. B 35(5), 928–947 (2005)CrossRefGoogle Scholar
  7. 7.
    Chawla, N.V., Japkowicz, N., Kolcz, A.: Editorial: special issue on learning from imbalanced data sets. SIGKDD Explorations 6(1), 1–6 (2004)CrossRefGoogle Scholar
  8. 8.
    Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of Artificial Intelligent Research 16, 321–357 (2002)zbMATHGoogle Scholar
  9. 9.
    Chi, Z., Yan, H., Pham, T.: Fuzzy algorithms with applications to image processing and pattern recognition. World Scientific, Singapore (1996)zbMATHGoogle Scholar
  10. 10.
    Estabrooks, A., Jo, T., Japkowicz, N.: A multiple resampling method for learning from imbalanced data-sets. Computational Intelligence 20(1), 18–36 (2004)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Fernández, A., del Jesus, M.J., Herrera, F.: Hierarchical fuzzy rule based classification system with genetic rule selection for imbalanced data-set. International Journal of Approximate Reasoning (2009) doi:10.1016/j.ijar.2008.11.004Google Scholar
  12. 12.
    Goldberg, D.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley, Reading (1989)zbMATHGoogle Scholar
  13. 13.
    Harpham, C., Dawson, C.W., Brown, M.R.: A review of genetic algorithms applied to training radial basis function networks. Neural Computing and Applications 13, 193–201 (2004)CrossRefGoogle Scholar
  14. 14.
    Huang, S.N., Tan, K.K., Lee, T.H.: Adaptive neural network algorithm for control design of rigid-link electrically driven robots. Neurocomputing 71(4-6), 885–894 (2008)CrossRefGoogle Scholar
  15. 15.
    Ishibuchi, H., Yamamoto, T.: Rule weight specification in fuzzy rule-based classification systems. IEEE Transactions on Fuzzy Systems 13, 428–435 (2005)CrossRefGoogle Scholar
  16. 16.
    Lacerda, E., Carvalho, A., Braga, A., Ludermir, T.: Evolutionary Radial Functions for Credit Assessment. Appl. Intell. 22, 167–181 (2005)CrossRefzbMATHGoogle Scholar
  17. 17.
    Maglogiannis, I., Sarimveis, H., Kiranoudis, C.T., Chatziioannou, A.A., Oikonomou, N., Aidinis, V.: Radial basis function neural netwroks classification for the recognition of idiopathic pulmonary fibrosis in microscopic images. IEEE T. Inf. Technol B 12(1), 42–54 (2008)CrossRefGoogle Scholar
  18. 18.
    Mandani, E., Assilian, S.: An experiment in linguistic synthesis with a fuzzy logic controller. Int. J. Man Mach. Stud. 7(1), 1–13 (1975)CrossRefzbMATHGoogle Scholar
  19. 19.
    Moody, J., Darken, C.J.: Fast learning in networks of locally-tuned processing units. Neural Comput. 1, 281–294 (1989)CrossRefGoogle Scholar
  20. 20.
    Murhphey, Y.L., Guo, H.: Neural learning from umbalanced data. Applied Intelligence 21, 117–128 (2004)CrossRefGoogle Scholar
  21. 21.
    Orr, M.J.L.: Regularization on the selection of radial basis function centers. Neural Comput. 7, 606–623 (1995)CrossRefGoogle Scholar
  22. 22.
    Orriols-Puig, A., Bernadó-Mansilla, E.: Evolutionary rule-based systems for imbalanced data-sets. Soft Computing 13(3), 213–225 (2009)CrossRefGoogle Scholar
  23. 23.
    Padmaja, T.M., Dhulipalla, N., Krishna, P.R., Bapi, R.S., Laha, A.: An unbalanced data classification model using hybrid sampling technique for fraud detection. In: Mueller, M.S., Chapman, B.M., de Supinski, B.R., Malony, A.D., Voss, M. (eds.) IWOMP 2005 and IWOMP 2006. LNCS, vol. 4315, pp. 341–438. Springer, Heidelberg (2008)Google Scholar
  24. 24.
    Park, J., Sandberg, I.: Universal approximation using radial-basis function networks. Neural Comput. 3, 246–257 (1991)CrossRefGoogle Scholar
  25. 25.
    Pérez-Godoy, M., Rivera, A.J., del Jesus, M.J., Berlanga, F.J.: Utilización de un sistema basado en reglas difusas para la aplicacin de operadores en un algoritmo cooperativo-competitivo. In: ESTYLF 2008, pp. 689–694 (2008)Google Scholar
  26. 26.
    Quilan, J.R.: C4.5: Programs for Machine Learning. Morgan Kauffman Publishers, San Mateo (1993)Google Scholar
  27. 27.
    Sun, Y.F., Liang, Y.C., Zhang, W.L., Lee, H.P., Lin, W.Z., Cao, L.J.: Optimal partition algorithm of the RBF neural network and its application to financial time series forecasting. Neural Comput. Appl. 143(1), 36–44 (2005)CrossRefGoogle Scholar
  28. 28.
    Whitehead, B., Choate, T.: Cooperative-competitive genetic evolution of Radial Basis Function centers and widths for time series predictiont. IEEE Trans. on Neural Networks 7(4), 869–880 (1996)CrossRefGoogle Scholar
  29. 29.
    Widrow, B., Lehr, M.A.: 30 Years of adaptive neural networks: perceptron, madaline and backpropagation. Proceedings of the IEEE 78(9), 1415–1444 (1990)CrossRefGoogle Scholar
  30. 30.
    Xu, L., Chow, M.Y., Taylor, L.S.: Power distribution fault cause identification with imbalanced data using the data mining-based fuzzy classification e-algorithm. IEEE Transactions on Power Systems 22(1), 164–171 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • M. D. Pérez-Godoy
    • 1
  • A. J. Rivera
    • 1
  • A. Fernández
    • 2
  • M. J. del Jesus
    • 1
  • F. Herrera
    • 2
  1. 1.Department of Computer ScienceUniversity of JaénJaénSpain
  2. 2.Department of Computer Science and Artificial IntelligenceUniversity of GranadaGranadaSpain

Personalised recommendations