The Delphi Process Applied to African Traditional Medicine

  • Ghislain Atemezing
  • Iván García-Magariño
  • Juan Pavón
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5517)

Abstract

The African Traditional Medicine (ATM) has been applied over the years in the ethnics of the African continent. The experts of this area have conserved this knowledge by oral transmission. This knowledge varies from one ethnic to other, thus it is distributed among these ethnics. In this context, this work proposes to use a multi-agent system to manage this distributed knowledge. The presented approach uses the Delphi process, in which, there are several agents that represent ATM healers and participate in several rounds of questionnaires in order to reach a consensus for providing a heal to a patient.

Keywords

Traditional Medicine Case-Based Reasoning language multi-agent system Delphi Process 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Atemezing, G.: Modisation multi agent massif d’un syste d’aidela dision en miecine traditionnelle. Annales de la Facultides Arts, Lettres et Sciences Humaines del’Universitde Ngaound, pp. 199–217 (2006) ISSN :1026-3225Google Scholar
  2. 2.
    Atemezing, G., Pavon, J.: An Ontology for African Traditional Medicine. In: International Symposium on Distributed Computing and Artificial Intelligence 2008 (Dcaia 2008), p. 329. Springer, Heidelberg (2008)Google Scholar
  3. 3.
    De Paz, Y., Bajo, J., De Paz, J.F., Corchado, J.M.: Integrating Case Planning and RPTW Neuronal Networks to Construct an Intelligent Environment for Health Care. Expert Systems with Applications 36, 5844–5858 (2009)CrossRefGoogle Scholar
  4. 4.
    Bello-Tomas, J.J., Gonzalez-Calero, P.A., Diaz-Agudo, B.: JColibri: An Object-Oriented Framework for Building CBR Systems. Lecture Note. In: Computer Science, pp. 32–46 (2004)Google Scholar
  5. 5.
    Brown, B.B., Rand Corporation: Delphi Process: A Methodology Used for the Elicitation of Opinions of Experts. Rand Corp. (1968)Google Scholar
  6. 6.
    Bryant, D.L., Abkowitz, M.D.: Estimation of terrestrial chemical spill risk factors using a modified delphi approach. Journal of Environmental Management 85, 112–120 (2007)CrossRefGoogle Scholar
  7. 7.
    de Paz, Y., Dante, T., Corchado, J.M., Bajo, J.: Intelligent Environment for Monotoring Alzheimer Patients, Agent Technology for Health Care. Decision Support Systems 44(2), 2382–2396 (2008)Google Scholar
  8. 8.
    Cuhls, K.: Delphi method. Technical report, Fraunhofer Institute for Systems and Innovation Research (2003)Google Scholar
  9. 9.
    García-Magariño, I., Gómez-Sanz, J.J., Pérez-Agüera, J.R.: A complete-computerised delphi process with a multi-agent system. In: Sixth international Workshop on Programming Multi-Agent Systems, ProMAS 2008, Estoril Portugal, May 13, 2008, pp. 187–202 (2008)Google Scholar
  10. 10.
    García-Magariño, I., Gómez-Sanz, J.J., Pérez-Agüera, J.R.: A multi-agent based implementation of a delphi process. In: The Seventh International Conference on Autonomous Agents and Multiagent Systems, AAMAS 2008, Estoril Portugal, May 12-16, 2008, pp. 1543–1546.Google Scholar
  11. 11.
    Gómez-Sanz, J.J., Fuentes-Fernández, R., Pavón, J., García-Magariño, I.: INGENIAS Development Kit: a visual multi-agent system development environment (Awarded as Best Academic Demo of AAMAS 2008). In: The Seventh International Conference on Autonomous Agents and Multiagent Systems, AAMAS 2008, Estoril Portugal, May 12-16, 2008, pp. 1675–1676 (2008)Google Scholar
  12. 12.
    Hayes, T.: Delphi study of the future of marketing of higher education. Journal of Business Research 60, 927–931 (2007)CrossRefGoogle Scholar
  13. 13.
    Holsapple, C.W., Joshi, K.D.: Knowledge manipulation activities: results of a delphi study. Information and Management 39, 477–490 (2002)CrossRefGoogle Scholar
  14. 14.
    Sindzingre, N., Dozon, J.P.: Pluralisme thérapeutique et médecine traditionnelle en afrique contemporaire; Fonds Documentaire ORSTOM, 43–51 (1986)Google Scholar
  15. 15.
    Kingue Kwa, N., et al.: Les cahiers du male ma makom. Duala (1994)Google Scholar
  16. 16.
    Mir, J., Huguet, A., Nieto, R.: Predictive factors of chronic pediatric pain and disability: A delphi poll. The Journal of Pain 8(10), 774–792 (2007)CrossRefGoogle Scholar
  17. 17.
    Pavón, J., Gómez-Sanz, J.J.: Agent Oriented Software Engineering with INGENIAS. In: Mařík, V., Müller, J.P., Pěchouček, M. (eds.) CEEMAS 2003. LNCS, vol. 2691, pp. 394–403. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  18. 18.
    Rosny, E.: L’Afrique des guérisons. Karthala, Paris (1992)Google Scholar
  19. 19.
    Roth, R.M.: A Delphi approach to acquiring knowledge from single and multiple experts. In: Proceedings of the 1990 ACM SIGBDP conference on Trends and directions in expert systems, pp. 301–324 (1990)Google Scholar
  20. 20.
    Rodriguez, S., Bajo, J., Corchado, J.M., Dante, T., De Paz, J.F.: Developing a Service Oriented Alternative for Distributed Mullti-Agent Systems. In: ZOCO 2008 / JISBD, pp. 277–285 (2008)Google Scholar
  21. 21.
    Turoff, M., Hiltz, S.R.: Computer Based Delphi Processes. Gazing into the Oracle. In: The Delphi Method and its Application to Social Policy and Public Health, pp. 56–85. Jessica Kingsley Publishers, London (1996)Google Scholar
  22. 22.
    Watson, I., Marir, F.: Case-Based Reasoning: A Review. The Knowledge Engineering Review 9(4), 327–354 (1994)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Ghislain Atemezing
    • 1
  • Iván García-Magariño
    • 1
  • Juan Pavón
    • 1
  1. 1.Dept. Software Engineering and Artificial Intelligence Facultad de InformáticaUniversidad Complutense de MadridSpain

Personalised recommendations