Connectivity Forests for Homological Analysis of Digital Volumes

  • Pedro Real
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5517)


In this paper, we provide a graph-based representation of the homology (information related to the different “holes” the object has) of a binary digital volume. We analyze the digital volume AT-model representation [8] from this point of view and the cellular version of the AT-model [5] is precisely described here as three forests (connectivity forests), from which, for instance, we can straightforwardly determine representative curves of “tunnels” and “holes”, classify cycles in the complex, computing higher (co)homology operations,... Depending of the order in which we gradually construct these trees, tools so important in Computer Vision and Digital Image Processing as Reeb graphs and topological skeletons appear as results of pruning these graphs.


digital volume cell complex chain homotopy graph tree forest homology cohomology 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Damiand, G., Peltier, S., Fuchs, L., Lienhardt, P.: Topological Map: An Efficient Tool to Compute Incrementally Topological Features on 3D Images. In: Reulke, R., Eckardt, U., Flach, B., Knauer, U., Polthier, K. (eds.) IWCIA 2006. LNCS, vol. 4040, pp. 1–15. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  2. 2.
    Delfinado, C.J.A., Edelsbrunner, H.: An Incremental Algorithm for Betti Numbers of Simplicial Complexes on the 3–Sphere. Comput. Aided Geom. Design 12, 771–784 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Forman, R.: A Discrete Morse Theory for Cell Complexes. In: Yau, S.T. (ed.) Geometry, Topology & Physics for Raoul Bott. International Press (1995)Google Scholar
  4. 4.
    Gonzalez-Diaz, R., Medrano, B., Real, P., Sanchez-Pelaez, J.: Algebraic Topological Analysis of Time-sequence of Digital Images. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2005. LNCS, vol. 3718, pp. 208–219. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  5. 5.
    Molina-Abril, H., Real, P.: Advanced homological information of digital volumen via cell complexes. In: da Vitora Lobo, N., et al. (eds.) SSPR&SPR 2008. LNCS, vol. 5342, pp. 361–371. Springer, Heidelberg (2008)Google Scholar
  6. 6.
    Gonzalez-Diaz, R., Jimenez, M.J., Medrano, B., Molina-Abril, H., Real, P.: Integral Operators for Computing Homology Generators at Any Dimension. In: Ruiz-Shulcloper, J., Kropatsch, W.G. (eds.) CIARP 2008. LNCS, vol. 5197, pp. 356–363. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  7. 7.
    Gonzalez-Diaz, R., Jiménez, M.J., Medrano, B., Real, P.: Chain Homotopies for Object Topological Representations. Discrete and Applied Mathematics 157, 490–499 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Gonzalez-Diaz, R., Real, P.: On the Cohomology of 3D Digital Images. Discrete Applied Math. 147, 245–263 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Hatcher, A.: Algebraic Topology. Cambridge University Press, Canbridge (2001)zbMATHGoogle Scholar
  10. 10.
    Munkres, J.R.: Elements of Algebraic Topology. Addison-Wesley Co., Reading (1984)zbMATHGoogle Scholar
  11. 11.
    Peltier, S., Alayrangues, S., Fuchs, L., Lachaud, J.O.: Computation of homology groups and generators. Computers & Graphics 30(1), 62–69 (2006)CrossRefzbMATHGoogle Scholar
  12. 12.
    Peltier, S., Ion, A., Haxhimusa, Y., Kropatsch, W.G., Damiand, G.: Computing Homology Group Generators of Images Using Irregular Graph Pyramids. In: Escolano, F., Vento, M. (eds.) GbRPR 2007. LNCS, vol. 4538, pp. 283–294. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  13. 13.
    Suuriniemi, S., Tarhasaari, T., Kettunen, L.: Generalization of the spanning-tree technique. IEEE Transactions on Magnetics 38(2), 525–528 (2002)CrossRefGoogle Scholar
  14. 14.
    Taubin, G., Rossignag, J.: Geometric compression through topological surgery. ACM Transactions on Graphics 17(2), 84–115 (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Pedro Real
    • 1
  1. 1.Dpto. Matematica Aplicada I, E.T.S.I. InformaticaUniversidad de SevillaSevillaSpain

Personalised recommendations