Evolutionary Fuzzy Scheduler for Grid Computing

  • R. P. Prado
  • S. García Galán
  • A. J. Yuste
  • J. E. Muñoz Expósito
  • A. J. Sánchez Santiago
  • S. Bruque
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5517)


In the last few years, the Grid community has been growing very rapidly and many new components have been proposed. In this sense, the scheduler represents a very relevant element that influences decisively on the grid system performance. The scheduling task of a set of heterogeneous, dynamically changing resources is a complex problem. Several scheduling systems have already been implemented; however, they still provide only “ad hoc” solutions to manage scheduling resources in a grid system. This paper presents a fuzzy scheduler obtained by means of evolving a previous fuzzy scheduler using Pittsburgh approach. This new evolutionary fuzzy scheduler improves the performance of the classical scheduling system.


Genetic Fuzzy Systems Grid Computing Automatic Learning 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Foster, I., Kesselman, C.: The Grid: Blueprint for a new Computing infrastructure. Morgan Kaufmann Publishers, San Francisco (1999)Google Scholar
  2. 2.
    Germain, C., Breton, V., Clarysse, P., Gaudeau, Y., Glatard, T., Jeannot, E., Legré, Y., Loomis, C., Magnin, I., Montagnat, J., Moureaux, J.-M., Osorio, A., Pennec, X., Texier, R.: Grid-enabling medical image analysis. Journal of Clinical Monitoring and Computing 19(4-5), 339–349 (2005)CrossRefGoogle Scholar
  3. 3.
    Stevens, R.D., Robinson, A.J., Goble, C.A.: BmyGrid: Personalized Bioinformatics on the Information Grid. Bioinformatics 19(1), i302–i304 (2003)CrossRefGoogle Scholar
  4. 4.
    Spooner, D.P., Cao, J., Jarvis, S.A., He, L., Nudd, G.R.: Performance-aware Workflow Management for Grid Computing. The Computer Journal (2004)Google Scholar
  5. 5.
    Cao, J., Spooner, D.P., Jarvis, S.A., Nudd, G.R.: Grid load balancing using intelligent agents. Future Genetation Comput. Syst. 21(1), 135–149 (2005)CrossRefGoogle Scholar
  6. 6.
    Garey, M., Johnson, D.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman and Company, New York (1979)zbMATHGoogle Scholar
  7. 7.
    Cordon, O., Herrera, F., Hoffmann, F., Magdalena, L.: Genetic fuzzy systems. Evolutionary tuning and learning of fuzzy knowledge bases. Advances in fuzzy systems. Applications and theory 19 (2001)Google Scholar
  8. 8.
    Smith, S.F.: A learning system based on genetic adaptive algorithms. Ph.D. thesis, University of Pittsburgh (1980)Google Scholar
  9. 9.
    Norman, T.J., Preece, A., Chalmers, S., Jennings, N.R., Luck, M., Dang, V.D., Nguyen, T.D., Deora, V., Shao, J., Gray, W.A., Fiddian, N.J.: Agent-based formation of virtual organizations. Knowledge-Based Systems 17(2-4), 103–111 (2004)CrossRefGoogle Scholar
  10. 10.
    Mandal, A., Kennedy, K., Koelbel, C., Marin, G., Mellor- Crummey, J., Liu, B., Johnsson, L.: Scheduling strategies for mapping application workflows onto the grid. In: Proceedings of HPDC 2005, pp. 125–134 (2005)Google Scholar
  11. 11.
    Sánchez Santiago, A.J., Yuste, A.J., Muñoz Expósito, J.E., García Galán, S., Maqueira Marin, J.M., Bruque Cámara, S.: A dynamic-balanced scheduler for Genetic Algorithms for Grid Computing. Wseas Transactions On Computers, 11–20 (2009)Google Scholar
  12. 12.
    Feitelson, D.G., Weil, A.M.: Utilization and Predictability in Scheduling the IBM SP2 with Backfilling. In: Proceedings of the 12th International Parallel Processing Symposium and the 9th Symposium on Parallel and Distributed Processing, pp. 542–547. IEEE Computer Society Press, Los Alamitos (1998)CrossRefGoogle Scholar
  13. 13.
    Litoiu, M., Tadei, R.: Fuzzy Scheduling with Applications on Real Time Systems. Fuzzy Sets and Systems 121, 523–535 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Zhou, J., Yu, J., Chou, C., Yang, L., Luo, Z.: A Dynamic Resource Broker and Fuzzy Logic Based Scheduling Algorithm in Grid Environment. In: Beliczynski, B., Dzielinski, A., Iwanowski, M., Ribeiro, B. (eds.) ICANNGA 2007. LNCS, vol. 4431, pp. 604–613. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  15. 15.
    Slowinski, R., Hapke, M.: Scheduling Under Fuzziness. Physica-Verlag, Heidelberg (2000)zbMATHGoogle Scholar
  16. 16.
    Huang, J., Jin, H., Xie, X., Zhang, Q.: An Approach to Grid Scheduling Optimization Based on Fuzzy Association Rule Mining. In: Proceedings of the First International Conference on e-Science and Grid Computing, e-Science 2005, pp. 189–195 (2005)Google Scholar
  17. 17.
    Jiang, C., Wang, C., Liu, X., Zhao, Y.: A Fuzzy Logic Approach for Secure and Fault Tolerant Grid Job Scheduling. In: Xiao, B., Yang, L.T., Ma, J., Muller-Schloer, C., Hua, Y. (eds.) ATC 2007. LNCS, vol. 4610, pp. 549–558. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  18. 18.
    Sulistio, A., Cibej, U., Robic Bb, S., Buyya, R.: A toolkit for Modelling and Simulating Data Grids: An Extension to GridSim. In: Concurrency and Computation: Practice and Experience (CCPE), pp. 1591–1609 (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • R. P. Prado
    • 1
  • S. García Galán
    • 1
  • A. J. Yuste
    • 1
  • J. E. Muñoz Expósito
    • 1
  • A. J. Sánchez Santiago
    • 1
  • S. Bruque
    • 1
  1. 1.Telecommunication Engineering Department.University of JaénJaén.Spain

Personalised recommendations