Stereo-MAS: Multi-Agent System for Image Stereo Processing

  • Sara Rodríguez
  • Juan F. De Paz
  • Javier Bajo
  • Dante I. Tapia
  • Belén Pérez
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5517)


This article presents a distributed agent-based architecture that can process the visual information obtained by stereoscopic cameras. The system is embedded within a global project whose objective is to develop an intelligent environment for location and identification within dependent environments that merge with other types of technologies. Vision algorithms are very costly and take a lot of time to respond, which is highly inconvenient if we consider that many applications can require action to be taken in real time. An agent architecture can automate the process of analyzing images obtained by cameras, and optimize the procedure.


Stereoscopy stereo cameras artificial vision MAS agents correspondence analysis dependent environments 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Angulo, C., Tellez, R.: Distributed Intelligence for smart home appliances. Red Española de Minería de Datos (2004)Google Scholar
  2. 2.
    Bajo, J., Corchado, J.M., de Paz, Y., de Paz, J.M., Rodríguez, S., Martín, Q., Abraham, A.: SHOMAS: Intelligent Guidance and Suggestions in Shopping Centres. Applied Soft Computing 9(2), 851–862 (2009)CrossRefGoogle Scholar
  3. 3.
    Bajo, J., de Paz, J.F., de Paz, Y., Corchado, J.M.: Integrating Case-based Planning and RPTW Neural Networks to Construct an Intelligent Environment for Health Care. Expert Systems with Applications, part 2 36(3), 5844–5858 (2009)CrossRefGoogle Scholar
  4. 4.
    Brenner, W., Wittig, H., Zarnekow, R.: Intelligent software agents: Foundations and applications. Springer, Secaucus, NJ, USA (1998)CrossRefzbMATHGoogle Scholar
  5. 5.
    Canny, J.: A computational approach to edge detection. IEEE Trans Pattern Analysis and Machine Intelligence 8(6), 679–698 (1986)CrossRefGoogle Scholar
  6. 6.
    Corchado, J.M., Bajo, J., Abraham, A.: GERAmI: Improving the delivery of health care. IEEE Intelligent Systems 23(2), 19–25 (2008)CrossRefGoogle Scholar
  7. 7.
    Corchado, J.M., Bajo, J., De Paz, Y., Tapia, D.I.: Intelligent Environment for Monitoring Alzheimer Patients, Agent Technology for Health Care. Decision Support Systems. Elsevier Science, Amsterdam (2006)Google Scholar
  8. 8.
    Corchado, J.M., Glez-Bedia, M., de Paz, Y., Bajo, J., de Paz, J.F.: Replanning mechanism for deliberative agents in dynamic changing environments. Computational Intelligence 24(2), 77–107 (2008)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Dhond, U.R., Aggarwal, J.K.: Structure From Stereo - A Review. IEEE Trans. on Systems, Man. and Cybernetics 19(6) (November/December 1989)Google Scholar
  10. 10.
    López-Valles, et al.: Revista Iberoamericana de Inteligencia Artificial  9(27), 35–62 (2005), ISSN: 1137-3601Google Scholar
  11. 11.
    Marr, D., Poggio, T.: A computational theory of human stereo vision. Proc. R. Soc. Lond., 301–328 (1979)Google Scholar
  12. 12.
    Marr, D., Hildreth, E.C.: Theory of edge detection. Proc. Roy. Soc. London B-207, 187–217 (1980)CrossRefGoogle Scholar
  13. 13.
    Pearson, Don: Image Processing. McGrawHill, Great Britain (1991)Google Scholar
  14. 14.
    Pecora, F., Cesta, A.: Dcop for smart homes: A case study. Computational Intelligence 23(4), 395–419 (2007)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Point Grey Research Inc. (2008),
  16. 16.
    Pollard, S.B., Mayhew, J.E.W., Frisby, J.P.: A stereo correspondence algorithm using a disparity gradient constraint. Perception 14, 445–470 (1985)CrossRefGoogle Scholar
  17. 17.
    Rao, A.S., Georgeff, M.P.: BDI agents: from theory to practice. In: Proceedings of ICMAS 1995, San Francisco, CA, USA (1995)Google Scholar
  18. 18.
    Rubio De Lemus, P.: Aplicacion De Una Metodologia De Evaluacion De Sistemas De Emparejamiento En Vision Tridimensional. Psicothema ISSN edición en papel: 0214-9915 5(1), 135–159 (1993)Google Scholar
  19. 19.
    Sobel, I., Feldman, G.: A 3x3 Isotropic Gradient Operator for Image Processing. In: Presentado en la conferencia Stanford Artificial Project (1968)Google Scholar
  20. 20.
    Triclops StereoVision System Manual Version 3.1. User guide and command reference. Point Grey Research Inc. (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Sara Rodríguez
    • 1
  • Juan F. De Paz
    • 1
  • Javier Bajo
    • 2
  • Dante I. Tapia
    • 1
  • Belén Pérez
    • 1
  1. 1.University of SalamancaSpain
  2. 2.Pontifical University of SalamancaSpain

Personalised recommendations