Advertisement

Special Time Series Prediction: Creep of Concrete

  • Juan L. Pérez
  • Fernando Martínez Abella
  • Alba Catoira
  • Javier Berrocal
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5517)

Abstract

This paper presents an algorithm, different from the classical time series, specialised in extracting knowledge from time series. The algorithm, based on Genetic Programming, enables the dynamic introduction of non-terminal operators shaped as mathematical expressions (operator-expression) that works as an unique node for the purpose of genetic operations (crossover and mutation). A new characteristic of this algorithm is the possibility of expansion the individuals, which, besides inducing a better global fitness, enables breaking up the expressions (operator-expression) into basic operators in order to achieve expression recombination. The performance of the implemented algorithm was showed by means of its application to the creep of structural concrete, a specific case of Construction Engineering where a best adjustment to the current regulative codes was subsequently achieved.

Keywords

Data Mining Evolutionary Computation Genetic Programming Civil Engineering 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Graupe, D.: Principles of Artificial Neural Networks. World Scientific, Singapore (1997)CrossRefzbMATHGoogle Scholar
  2. 2.
    Holland, J.H.: Adaptation in Natural and Artificial Systems. University of Michigan Press, Michigan (1975)Google Scholar
  3. 3.
    Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge (1992)zbMATHGoogle Scholar
  4. 4.
    Cios, K., Pedrycz, W., Swiniarrski, R., Kurgan, L.: Data Mining: A Knowledge Discovery Approach. Springer, New York (2007)zbMATHGoogle Scholar
  5. 5.
    Brown, M., Harris, C.: Neurofuzzy adaptive modelling and control. Prentice-Hall, Hertfordshire, UK (1994)Google Scholar
  6. 6.
    Rivero, D., Rabuñal, J.R., Dorado, J., Pazos, A.: Time Series Forecast with Anticipation Using Genetic Programming. In: Cabestany, J., Prieto, A.G., Sandoval, F. (eds.) IWANN 2005. LNCS, vol. 3512, pp. 968–975. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  7. 7.
    Öztaş, A., Pala, M., Özbay, E., Kanca, E., Çağlar, N., Bhatti, M.A.: Predicting the compressive strength and slump of high strength concrete using neural network. Constr. Build. Mater. 20, 769–775 (2006)CrossRefGoogle Scholar
  8. 8.
    Morcous, G., Lounis, Z.: Maintenance optimization of infrastructure networks using genetic algorithms. Automat. Constr. 14, 129–142 (2005)CrossRefGoogle Scholar
  9. 9.
    Ashour, A.F., Alvarez, L.F., Toropov, V.V.: Empirical modelling of shear strength of RC deep beams by genetic programming. Comput. Struct. 81, 331–338 (2003)CrossRefGoogle Scholar
  10. 10.
    Kicinger, R., Arciszewski, T., De Jong, K.A.: Evolutionary computation and structural design: a survey of the state of the art. Comput. Struct. 83, 1943–1978 (2005)CrossRefGoogle Scholar
  11. 11.
    Yeh, I.-C.: Computer-aided design for optimum concrete mixtures. Cement. Concrete. Comp. 29, 193–202 (2007)CrossRefGoogle Scholar
  12. 12.
    Cladera, A., Marí, A.R.: Shear design procedure for reinforced normal and high-strength concrete beams using artificial neural networks. Part I: beams without stirrups. Eng. Struct. 26, 917–926 (2004)Google Scholar
  13. 13.
    Réunion Internationale des Laboratoires et Experts des Matériaux, systèmes de construction et ouvrages, http://www.rilem.net
  14. 14.
    ACI Committee 209: Prediction of Creep, Shrinkage and Temperature Effects in Concrete Structures. ACI 209-82. American Concrete Institute, Detroit (1982) Google Scholar
  15. 15.
    Müller, H.S., Hilsdorf, H.K.: Evaluation of the Time Dependent Behavior of Concrete. CEB Comite Euro-International du Beton. Bulletin d’Inforrnation No 199. France (1990)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Juan L. Pérez
    • 1
  • Fernando Martínez Abella
    • 2
  • Alba Catoira
    • 1
  • Javier Berrocal
    • 1
  1. 1.RNASA-IMEDIR group, Information and Communication Technologies Research Centre (CITIC)University of A CoruñaA CoruñaSpain
  2. 2.Construction group - gCONS, Higher Technical University College of Civil EngineeringUniversity of A CoruñaA CoruñaSpain

Personalised recommendations