Video Artifacts Assessment for Live Mobile Streaming Applications

  • Eduardo Cerqueira
  • Lucjan Janowski
  • Mikołaj Leszczuk
  • Zdzisław Papir
  • Piotr Romaniak
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5630)

Abstract

Live mobile streaming applications will be among the most important applications in future wireless multimedia systems. Hence, a Quality of Experience (QoE) assessment control mechanism is an essential requirement to assure the video quality level, whiling maximizing profits to service providers and keeping and attracting new customers. This paper studies the requirements to develop a video artifacts assessment mechanism for live mobile streaming applications, introduce a new assessment solution and no-reference QoE metrics. The proposed schemes are evaluated based on psycho-physical experiments faced with artifacts measurements. The results present the benefits of the assessment mechanism in estimating the quality level of live mobile streaming applications.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Romaniak, P., Mu, M., Mauthe, A., D’Antonio, S., Leszczuk, M.: A framework for integrated video quality assessment. In: 18th ITC Specialist Seminar on Quality of Experience (May 2008)Google Scholar
  2. 2.
    Derbel, H., Agoulmine, N., Salaün, M.: Anema: Autonomic network management architecture to support self-configuration and self-optimization in ip networks. Comput. Netw. 53(3), 418–430 (2009)CrossRefMATHGoogle Scholar
  3. 3.
    Dosselmann, R., Yang, X.D.: A Prototype No-Reference Video Quality System. In: Fourth Canadian Conference on Computer and Robot Vision, CRV 2007, May 2007, pp. 411–417 (2007)Google Scholar
  4. 4.
    Lee, J., Hoppel, K.: Noise Modeling and Estimation of Remotely-sensed Images. In: Proc. International Geoscience and Remote Sensing, Vancouver, Canada, vol. 2, pp. 1005–1008 (1989)Google Scholar
  5. 5.
    Pandel, J.: Measuring of flickering artifacts in predictive coded video sequences. In: WIAMIS 2008: Proceedings of the 2008 Ninth International Workshop on Image Analysis for Multimedia Interactive Services, Washington, DC, USA, pp. 231–234. IEEE Computer Society, Los Alamitos (2008)CrossRefGoogle Scholar
  6. 6.
    ITU-T: Subjective Video Quality Assessment Methods for Multimedia Applications. ITU-T (1999)Google Scholar
  7. 7.
    ITU-T: Methods for subjective determination of transmission quality. ITU-T, Geneva, Switzerland (1996)Google Scholar
  8. 8.
    Watanabe, K., Yamagishi, K., Okamoto, J., Takahashi, A.: Proposal of new qoe assessment approach for quality management of iptv services. In: ICIP, pp. 2060–2063. IEEE, Los Alamitos (2008)Google Scholar
  9. 9.
    Ding, W., Tong, Y., Zhang, Q., Yang, D.: Image and video quality assessment using neural network and SVM. Tsinghua Science and Technology Journal 3(1) (February 2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Eduardo Cerqueira
    • 1
  • Lucjan Janowski
    • 2
  • Mikołaj Leszczuk
    • 2
  • Zdzisław Papir
    • 2
  • Piotr Romaniak
    • 2
  1. 1.Departamento de Engenharia Informatica.University of CoimbraPolo II
  2. 2.Department of TelecommunicationsAGH University of Science and TechnologyPoland

Personalised recommendations