Framework for Visualisation of Cancer Tumours

  • Yin Jie Chen
  • Razvan Bocu
  • Mark Tangney
  • Sabin Tabirca
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 5)

Abstract

This paper discusses the use of Fister-Panetta model in the visualisation of cancerous growths. Cancer evolution and the associated proper medication strategy is an example of such a complex problem that requires an interdisciplinary approach in order to be properly addressed. The paper addresses some basic aspects regarding how cancer research could benefit from the cooperation between mathematics and biology, describes how to model and visualize cancer tumor with recursive algorithms and Fister and Panetta pattern.

Keywords

Cancer modeling cancer visualization computer graphics Fister-Panetta upper bound 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cooper, G.M.: The Cancer Book. Jones and Bartlett Publishers (1993) ISBN:0867207701Google Scholar
  2. 2.
    Denise, S., Marc, V., Robert, G.: Local modeling of global interactome networks. Advance access publication (2005)Google Scholar
  3. 3.
    Wilkinson, M.H.F.: Nonlinear Dynamics, Chaos-theory, and the ”Sciences of Complexity”: Their Relevance to the Study of the Interaction between Host and Microflora. Old Herborn University Seminar Monograph 10: New Antimicrobial Strategies, pp. 110–130 (1997)Google Scholar
  4. 4.
    Hunerbein, M., Ghadimi, B.M., Gretschel, S., Schlag, P.M.: Three-dimensional endoluminal ultrasound: a new method for the evaluation of gastrointestinal tumors, vol. 24, pp. 445–448. Springer, Heidelberg (1999)Google Scholar
  5. 5.
    Clem, A.J., Rigaut, J.P.: Computer simulation modelling and visualization of 3D architecture of biological tissues, vol. 43, pp. 425–442. Springer, Netherlands (1995)Google Scholar
  6. 6.
    West, G.B., Brown, J.H., Enquist, B.J.: A general model for ontogenetic growth. Nature (626) (2002)Google Scholar
  7. 7.
    Adriana, N., Mombach, J., Walter, M., Deavila, F.: The interplay between cell adhesion and environment rigidity in the morphology of tumors, vol. 322, pp. 546–554. Elsevier, Amsterdam (2003)Google Scholar
  8. 8.
    Stott, E.L., Britton, N.F.: Stochastic Simulation of Benign Avascular Tumour Growth Using the Potts Model, vol. 30, pp. 183–198. Elsevier, Amsterdam (1999)Google Scholar
  9. 9.
    Baish, J.W., Jain, R.K.: Fractals and Cancer, vol. 60, pp. 3683–3688. American Association for Cancer Research (2000)Google Scholar
  10. 10.
    Hartwell, L., et al.: From molecular to modular cell biology. Nature 402 (1999)Google Scholar
  11. 11.
    Kyungsook, H., Byong-Hyon, J.: A fast layout algorithm for prothein interaction networks, pp. 402–751. School of Computer Science and Engineering Inha University, Inchon (2003)Google Scholar
  12. 12.
    Deutsch, A., Brusch, L., Helen, et al.: Mathematical Modeling of Biological Systems. Birkhäuser, Boston (2007)Google Scholar
  13. 13.
    Dana, M.: Mathematical modeling and cancer, vol. 37. SIAM News, Philadelphia (2004)Google Scholar
  14. 14.
    Carmeliet, P.: Angiogenesis in health and disease. Nature Medicine 9, 653–670 (2003)Google Scholar
  15. 15.
    Jonsson, F., Pall, B.A., Paul: Global topological features of cancer proteins in the human interactome. Advance Access publication (2006)Google Scholar
  16. 16.
    Johnston, D., Matthew, E.M., Carina, B.F., Walter, M.K., Philip, C.S., Jonathan: Mathematical modeling of cell population dynamics in the colonic crypt and in colorectal cancer. In: Proceedings of the National Academy of Sciences of the United States of America (2007)Google Scholar
  17. 17.
    Fister, R.K., Panetta, Carl, J.: Optimal control applied to competing chemotherapeutic cell-kill strategies. SIAM Journal of Applied Mathematics 63 (2003)Google Scholar
  18. 18.
    Murray, J.M.: Optimal control for a cancer chemotherapy problem with general growth and loss functions. Math. Biosci (1990)Google Scholar
  19. 19.
    Holford, N., Sheiner, L.: Pharmacokinetic and pharmacodynamic modeling in vivo, Number 5. CRC Crit. Rev. Bioeng (1981)Google Scholar
  20. 20.
    Scholtens, D., Vidal, M., Gentleman, R.: Local modeling of global interactome networks. Advance access publication (2005)Google Scholar
  21. 21.
    Fister, R.K., Panetta, J.C.: Optimal control applied to cell-cycle-specific chemotherapy. SIAM Journal of Applied Mathematics 60 (2000)Google Scholar

Copyright information

© ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering 2009

Authors and Affiliations

  • Yin Jie Chen
    • 1
  • Razvan Bocu
    • 1
  • Mark Tangney
    • 2
  • Sabin Tabirca
    • 1
  1. 1.Department of Computer ScienceUniversity College CorkIreland
  2. 2.Cork Cancer Research CentreIreland

Personalised recommendations