Advertisement

Fingerprint for Network Topologies

  • Yuchun Guo
  • Changjia Chen
  • Shi Zhou
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 5)

Abstract

A network’s topology information can be given as an adjacency matrix. The bitmap of sorted adjacency matrix (BOSAM) is a network visualisation tool which can emphasise different network structures by just looking at reordered adjacent matrixes. A BOSAM picture resembles the shape of a flower and is characterised by a series of ‘leaves’. Here we show and mathematically prove that for most networks, there is a self-similar relation between the envelope of the BOSAM leaves. This self-similar property allows us to use a single envelope to predict all other envelopes and therefore reconstruct the outline of a network’s BOSAM picture. We analogise the BOSAM envelope to human’s fingerprint as they share a number of common features, e.g. both are simple, easy to obtain, and strongly characteristic encoding essential information for identification.

Keywords

complex network mixing patterns visualisation BOSAM 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wasserman, S., Faust, K.: Social Network Analysis. Cambridge University Press, Cambridge (1994)CrossRefzbMATHGoogle Scholar
  2. 2.
    Watts, J.: Small Worlds: The Dynamics of Networks between Order and Randomness. Princeton Univeristy Press, New Jersey (1999)zbMATHGoogle Scholar
  3. 3.
    Barabási, A., Albert, R.: Science 286, 509 (1999)Google Scholar
  4. 4.
    Strogatz, S.H.: Nature 410, 268 (2001)Google Scholar
  5. 5.
    Albert, R., Barabasi, A.L.: Rev. Mod. Phys. 74, 47 (2002)Google Scholar
  6. 6.
    Maslov, S., Sneppen, K.: Science 296, 910 (2002)Google Scholar
  7. 7.
    Bornholdt, S., Schuster, H.G.: Handbook of Graphs and Networks - From the Genome to the Internet. Wiley-VCH, Weinheim (2002)CrossRefzbMATHGoogle Scholar
  8. 8.
    Newman, M.: SIAM Review 45, 167 (2003a)Google Scholar
  9. 9.
    Dorogovtsev, S.N., Mendes, J.F.F.: Evolution of Networks - From Biological Nets to the Internet and WWW. Oxford University Press, Oxford (2003)CrossRefzbMATHGoogle Scholar
  10. 10.
    Pastor-Satorras, R., Vespignani, A.: Evolution and Structure of the Internet - A Statistical Physics Approach. Cambridge University Press, Cambridge (2004)CrossRefzbMATHGoogle Scholar
  11. 11.
    Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., Hwang, D.-U.: Physics Reports 424, 175 (2006)Google Scholar
  12. 12.
    Newman, M., Barabasi, A.-L., Watts, D. (eds.): The Structure and Dynamics of Networks. Princeton University Press, Princeton (2006)Google Scholar
  13. 13.
    Alvarez-Hamelin, J.-I., Dall’Asta, L., Barrat, A., Vespignani, A.: arXiv.org:cs/0504107Google Scholar
  14. 14.
    Guo, Y., Chen, C., Zhou, S.: Electronics Letters 43, 597 (2007)Google Scholar
  15. 15.
    Chakrabarti, D., Faloutsos, C., Zhan, Y.P.: International Journal of Human Computer Studies 65, 434 (2007)Google Scholar
  16. 16.
    Vazquez, A., Boguñá, M., Moreno, Y., Pastor-Satorras, R., Vespignani, A.: Phys. Rev. E 67 (2003)Google Scholar
  17. 17.
    Mahadevan, P., Krioukov, D., Fall, K., Vahdat, A.: Proc. of SIGCOMM 2006, pp. 135–146. ACM Press, New York (2006a)Google Scholar
  18. 18.
    Newman, M.E.J.: Phys. Rev. E 67 (2003b)Google Scholar
  19. 19.
    Newman, M.E.J.: Phys. Rev. Lett. 89 (2002)Google Scholar
  20. 20.
    Zhou, S., Mondragon, R.J.: IEEE Comm. Lett. 8, 180 (2004a)Google Scholar
  21. 21.
    Zhou, S., Mondragon, R.: New Journal of Physics 9, 1 (2007)Google Scholar
  22. 22.
    Mahadevan, P., Krioukov, D., Fomenkov, M., Huffaker, B., Dimitropoulos, X., Clffay, K., Vahdat, A.: Comput. Commun. Rev. 36, 17 (2006b)Google Scholar
  23. 23.
    Hogg, R.V., Craig, A.T.: Introduction to Mathematical Statistics, 3rd edn. Macmillan, Basingstoke (1970)zbMATHGoogle Scholar
  24. 24.
    Rose, C., Smith, M.D.: Order Statistics. Springer, New York (2002)zbMATHGoogle Scholar
  25. 25.
    Erdös, P., Rényi, A.: Publ. Math. Debrecen 6, 290 (1959)Google Scholar
  26. 26.
    Zhou, S., Mondragón, R.J.: Phys. Rev. E 70 (2004b)Google Scholar
  27. 27.
    Zhou, S.: Phys. Rev. E 74 (2006)Google Scholar
  28. 28.
    Zhou, S., Zhang, G.-Q., Zhang, G.-Q.: IET Commun. 1, 209 (2007)Google Scholar
  29. 29.
    Newman, M.: Phys. Rev. E 64, 016131 (2001a)Google Scholar
  30. 30.
    Newman, M.: Phys. Rev. E 64 (2001b)Google Scholar
  31. 31.
    Colizza, V., Flammini, A., Maritan, A., Vespignani, A.: Physica A 352, 1 (2005)Google Scholar
  32. 32.
    Internet Topology Data Kit (ITDK) #0403, http://www.caida.org/tools/measurement/skitter/
  33. 33.
    The Cooperative Association For Internet Data Analysis (CAIDA), http://www.caida.org/
  34. 34.
    Guimerá, R., Danon, L., Daz-Guilera, A., Giralt, F., Arenas, A.: Phys. Rev. E 68, 065103(R) (2003)Google Scholar

Copyright information

© ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering 2009

Authors and Affiliations

  • Yuchun Guo
    • 1
  • Changjia Chen
    • 1
  • Shi Zhou
    • 2
  1. 1.Beijing Jiaotong UniversityChina
  2. 2.University College LondonUnited Kingdom

Personalised recommendations