Advertisement

Evolution of the Internet AS-Level Ecosystem

  • Srinivas Shakkottai
  • Marina Fomenkov
  • Ryan Koga
  • Dmitri Krioukov
  • Kc Claffy
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 5)

Abstract

We present an analytically tractable model of Internet evolution at the level of Autonomous Systems (ASs). We call our model the multiclass preferential attachment (MPA) model. As its name suggests, it is based on preferential attachment. All of its parameters are measurable from available Internet topology data. Given the estimated values of these parameters, our analytic results predict a definitive set of statistics characterizing the AS topology structure. These statistics are not part of model formulation. The MPA model thus closes the “measure-model-validate-predict” loop, and provides further evidence that preferential attachment is the main driving force behind Internet evolution.

Keywords

Preferential attachment Internet evolution AS-level topology Internet measurement 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Faloutsos, M., Faloutsos, P., Faloutsos, C.: On power-law relationships of the Internet topology. In: SIGCOMM 1999: Proceedings of the conference on Applications, technologies, architectures, and protocols for computer communication, pp. 251–262. ACM Press, New York (1999)Google Scholar
  2. 2.
    Chang, H., Jamin, S., Willinger, W.: Internet connectivity at the AS-level: An optimization-driven modeling approach. In: MoMeTools 2003: Proceedings of the ACM SIGCOMM workshop on Models, methods and tools for reproducible network research, pp. 33–46. ACM Press, New York (2003)CrossRefGoogle Scholar
  3. 3.
    Zhou, S., Mondragón, R.J.: Accurately modeling the Internet topology. Phys. Rev. E. 70, 066108 (2004)CrossRefGoogle Scholar
  4. 4.
    Serrano, M.Á., Boguñá, M., Díaz-Guilera, A.: Competition and adaptation in an Internet evolution model. Phys. Rev. Lett. 94, 38701 (2005)CrossRefGoogle Scholar
  5. 5.
    Serrano, M.Á., Boguñá, M., Díaz-Guilera, A.: Modeling the Internet. Eur. Phys. J. B 50, 249–254 (2006)CrossRefGoogle Scholar
  6. 6.
    Chang, H., Jamin, S., Willinger, W.: To peer or not to peer: Modeling the evolution of the Internet’s AS-level topology. In: INFOCOM 2006. 25th IEEE International Conference on Computer Communications, Barcelona, Catalunya, Spain, April 23-29, 2006. IEEE, Los Alamitos (2006)Google Scholar
  7. 7.
    Wang, X., Loguinov, D.: Wealth-based evolution model for the Internet AS-level topology. In: INFOCOM 2006. 25th IEEE International Conference on Computer Communications, Barcelona, Catalunya, Spain, April 23-29, 2006. IEEE, Los Alamitos (2006)Google Scholar
  8. 8.
    D’Souza, R., Borgs, C., Chayes, J., Berger, N., Kleinberg, R.: Emergence of tempered preferential attachment from optimization. Proc. Natl. Acad. Sci. USA 104, 6112–6117 (2007)CrossRefGoogle Scholar
  9. 9.
    Corbo, J., Jain, S., Mitzenmacher, M., Parkes, D.: An economically-principled generative model of AS graph connectivity. In: NetEcon+IBC 2007: Proceedings of the ACM Joint Workshop on The Economics of Networked Systems and Incentive-Based Computing. ACM Press, New York (2007)Google Scholar
  10. 10.
    Bar, S., Gonen, M., Wool, A.: A geographic directed preferential Internet topology model. Comput. Netw. 51(14), 4174–4188 (2007)CrossRefzbMATHGoogle Scholar
  11. 11.
    Holme, P., Karlin, J., Forrest, S.: An integrated model of traffic, geography and economy in the Internet. Comput. Commun. Rev. 38(3) (2008)Google Scholar
  12. 12.
    Krioukov, D., Chung, F., claffy, k., Fomenkov, M., Vespignani, A., Willinger, W.: The workshop on Internet topology (WIT) report. Comput. Commun. Rev. 37(1) (2007)Google Scholar
  13. 13.
    Mahadevan, P., Krioukov, D., Fall, K., Vahdat, A.: Systematic topology analysis and generation using degree correlations. In: SIGCOMM 2006: Proceedings of the 2006 conference on Applications, technologies, architectures, and protocols for computer communications, pp. 135–146. ACM Press, New York (2006)CrossRefGoogle Scholar
  14. 14.
    Dimitropoulos, X., Krioukov, D., Riley, G., Vahdat, A.: Graph annotations in modeling complex network topologies. ACM Transactions on Modeling and Computer Simulation (to appear, 2009) arXiv:0708.3879Google Scholar
  15. 15.
    Barabási, A.-L., Albert, R.: Emergence of scaling in random networks. Science 286, 509–512 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Dorogovtsev, S.N., Mendes, J.F.F., Samukhin, A.N.: Structure of growing networks with preferential linking. Phys. Rev. Lett. 85(21), 4633–4636 (2000)CrossRefGoogle Scholar
  17. 17.
    Krapivsky, P.L., Redner, S., Leyvraz, F.: Connectivity of growing random networks. Phys. Rev. Lett. 85(21), 4629–4632 (2000)CrossRefGoogle Scholar
  18. 18.
    Dimitropoulos, X., Krioukov, D., Riley, G., claffy, k.: Revealing the Autonomous System taxonomy: The machine learning approach. In: PAM 2007: Proceedings of the 7th International Conference on Passive and Active Network Measurement, Adelaide, Australia, March 30-31 (2006)Google Scholar
  19. 19.
    Chang, H., Govindan, R., Jamin, S., Shenker, S.J., Willinger, W.: Towards capturing representative AS-level Internet topologies. Comput. Netw. 44(6), 737–755 (2004)CrossRefGoogle Scholar
  20. 20.
    Mahadevan, P., Krioukov, D., Fomenkov, M., Huffaker, B., Dimitropoulos, X., claffy, k., Vahdat, A.: The Internet AS-level topology: Three data sources and one definitive metric. Comput. Commun. Rev. 36(1), 17–26 (2006)CrossRefGoogle Scholar
  21. 21.
    University of Oregon RouteViews Project, http://www.routeviews.org/
  22. 22.
    Dimitropoulos, X., Krioukov, D., Fomenkov, M., Huffaker, B., Hyun, Y., claffy, k., Riley, G.: AS relationships: Inference and validation. Comput. Commun. Rev. 37(1) (2007)Google Scholar
  23. 23.
    Zhou, S., Zhang, G., Zhang, G.: The Chinese Internet AS-level topology. IET Commun. 1(2), 209–214 (2007)CrossRefGoogle Scholar
  24. 24.
    CAIDA. AS Relationships Data. Research Project, http://www.caida.org/data/active/as-relationships/
  25. 25.
    Albert, R., Barabási, A.-L.: Statistical mechanics of complex networks. Rev. Mod. Phys. 74, 47–97 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Dorogovtsev, S.N., Mendes, J.F.F.: Evolution of Networks: From Biological Nets to the Internet and WWW. Oxford University Press, Oxford (2003)CrossRefzbMATHGoogle Scholar
  27. 27.
    Newman, M.E.J.: The structure and function of complex networks. SIAM Rev. 45(2), 167–256 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., Hwanga, D.-U.: Complex networks: Structure and dynamics. Phys. Rep. 424, 175–308 (2006)MathSciNetCrossRefGoogle Scholar

Copyright information

© ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering 2009

Authors and Affiliations

  • Srinivas Shakkottai
    • 1
  • Marina Fomenkov
    • 2
  • Ryan Koga
    • 2
  • Dmitri Krioukov
    • 2
  • Kc Claffy
    • 2
  1. 1.Texas A&M UniversityCollege StationUSA
  2. 2.Cooperative Association for Internet Data AnalysisUniversity of CaliforniaSan DiegoUSA

Personalised recommendations