Statistical Properties of Cell Topology and Geometry in a Tissue-Growth Model

  • Patrik Sahlin
  • Olivier Hamant
  • Henrik Jönsson
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 4)


Statistical properties of cell topologies in two-dimensional tissues have recently been suggested to be a consequence of cell divisions. Different rules for the positioning of new walls in plants have been proposed, where e.g. Errara’s rule state that new walls are added with the shortest possible path dividing the mother cell’s volume into two equal parts. Here, we show that for an isotropically growing tissue Errara’s rule results in the correct distributions of number of cell neighbors as well as cellular geometries, in contrast to a random division rule. Further we show that wall mechanics constrain the isotropic growth such that the resulting cell shape distributions more closely agree with experimental data extracted from the shoot apex of Arabidopsis thaliana.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Smith, L.G.: Plant Cell Division: Building Walls in the Right Places. Nat. Rev. Mol. Cell. Biol. 2, 33–39 (2001)CrossRefGoogle Scholar
  2. 2.
    Hofmeister, W.: Zusatze und Berichtigungen zu den 1851 Veröffentlichen Untersuchungengen der Entwicklung Höherer Kryptogamen. Jahrbucher für Wissenschaft und Botanik 3, 259–293 (1863)Google Scholar
  3. 3.
    Sachs, J.: Über die Anordnung der Zellen in Jüngsten Pflanzentheilen. Arb. bot. Inst. Wurzburg 2, 46 (1878)Google Scholar
  4. 4.
    Errera, L.: Über Zellformen und Siefenblasen. Botanisches Centralblatt 34, 395–399 (1888)Google Scholar
  5. 5.
    Lintilhac, P.M., Vesecky, T.B.: Stress-induced Alignment of Division Plane in Plant Tissues Grown in Vitro. Nature 307, 363–364 (1984)CrossRefGoogle Scholar
  6. 6.
    Lynch, T.M., Lintilhac, P.M.: Mechanical Signals in Plant Development: A New Method for Single Cell Studies. Dev. Biol. 181, 246–256 (1997)CrossRefGoogle Scholar
  7. 7.
    Lewis, F.T.: The effect of cell division on the shape and size of hexagonal cells. Anatomical Records 33, 331–355 (1926)CrossRefGoogle Scholar
  8. 8.
    Lewis, F.T.: The correlation between cell division and the shapes and sizes of prismatic cells in the epidermis of cucumis. Anatomical Records 38, 341–376 (1928)CrossRefGoogle Scholar
  9. 9.
    Gibson, M.C., Patel, A.B., Nagpal, R., Perrimon, N.: The Emergence of Geometric Order in Proliferating Metazoan Epithelia. Nature 442, 1038–1041 (2006)CrossRefGoogle Scholar
  10. 10.
    de Reuille, P.B., Bohn-Courseau, I., Godin, C., Traas, J.: A Protocol to Analyse Cellular Dynamics During Plant Development. Plant J. 44, 1045–1053 (2005)CrossRefGoogle Scholar

Copyright information

© ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering 2009

Authors and Affiliations

  • Patrik Sahlin
    • 1
  • Olivier Hamant
    • 2
  • Henrik Jönsson
    • 1
  1. 1.Computational Biology & Biological Physics, Department of Theoretical PhysicsLund UniversityLundSweden
  2. 2.INRA, CNRS, ENSUniversité de LyonLyon Cedex 07France

Personalised recommendations