Selection of Imitation Strategies in Populations When to Learn or When to Replicate?

  • Juan G. Díaz Ochoa
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 4)


A question in the modeling of populations of imitators is if simple imitation or imitation based on learning rules can improve the fitness of the individuals. In this investigation this problem is analyzed for two kinds of imitators involved in a cooperative dilemma: One kind of imitators has a replicator heuristics, i.e. individuals which decide its new action based on actions of their neighbors, whereas a second type has a learning heuristics, i.e. individuals which use a learning rule (for short learner) in order to determine their new action. The probability that a population of learners penetrates in a population of replicators depends on a training error parameter assigned to the replicators. I show that this penetration is similar to a site percolation process which is robust to changes in the individual learning rule.


Learning Population Dynamics Game theory Percolation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Axelrod, R., Hamilton, W.D.: The Evolution of Cooperation. Science 211, 1390 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Dawkins, R.: The Selfish Gene. Oxford University Press, Oxford (1990)Google Scholar
  3. 3.
    Selten, R., Ostmann, A.: Imitation Equilibrium. Homo Oeconomicus 16, 114 (2001)Google Scholar
  4. 4.
    Breazeal, C., Buchsbaum, D., Gray, J., Gatenby, D., Blumberg, B.: Learning from and About Others: Towards Using Imitation to Bootstrap the Social Understanding of Others by Robots. Artificial Life 11, 31 (2005)CrossRefGoogle Scholar
  5. 5.
    Kirman, A.: Ants, Rationality, and Recruitment. The Quartery Journal of Economics 108, 137 (1993)CrossRefGoogle Scholar
  6. 6.
    Nadeau, R., Cloutier, E., Guay, J.-H.: New Evidence About the Existence of a Bandwagon Effect in the Opinion Formation Process. International Political Science Review 14, 203 (1993)CrossRefGoogle Scholar
  7. 7.
    Smith, L., Sörensen, P.N.: Cowles foundation discussion paper NO. 1552. Yale University (2005)Google Scholar
  8. 8.
    Henrich, J., Boyd, R.: The Evolution of Conformist Transmission and the Emergence of Between-Group Differences. Evolution and Human Behavior 19, 215 (1998)CrossRefGoogle Scholar
  9. 9.
    Chavalarias, D.: Metamimetic Games: Modeling Metadynamics in Social Cognition (2005),
  10. 10.
    Guzmán, R.A., Rodríguez-Sickert, C., Rowthorn, R.: When in Rome, do as the Romans do: the coevolution of altruistic punishment, conformist learning, and cooperation. Evolution and Human Behavior 28, 112 (2007)CrossRefGoogle Scholar
  11. 11.
    Lasner, A., Ekenberg, O.: A One-Layer Feedback Artificial Neural Network With Bayesian Learning Rule. Int. J. Neural Systems 1, 77 (1989)CrossRefGoogle Scholar
  12. 12.
    Engel, A., van den Broeck, C.: Statististical Mechanics of Learning. Cambridge University Press, Cambridge (2001)CrossRefGoogle Scholar
  13. 13.
    Hebb, D.O.: The organization of Behavior. Wiley, New York (1949)Google Scholar
  14. 14.
    Nowak, M., May, R.M.: Evolutionary Games and Spatial Chaos. Nature 359, 826 (1992)CrossRefGoogle Scholar
  15. 15.
    Galam S.: Behind the Shirts, is Symmetry (1999), physics/9901012 v1 11Google Scholar
  16. 16.
    Bull, L., Holland, O., Blackmore, S.: On Meme-Gene Coevolution. Artificial Life 6, 227 (2000)CrossRefGoogle Scholar
  17. 17.
    Hauert, C.H., Schuster, H.G.: Effects of increasing the Number of Players and Memory Size in the Iterated Prisoner’s Dilemma: a numerical approach. Proc. R. Soc. Lond. B 264, 513 (1997)CrossRefGoogle Scholar
  18. 18.
    Sanz, A., Martin, M.: Memory boots Cooperation. Int. Jour. Mod. Phys. C 17, 841 (2006)CrossRefzbMATHGoogle Scholar
  19. 19.
    Hauert, C.: Fundamental Clusters in Spatial 2–2 games. Proc. R. Soc. Lond. B 268, 761 (2001)CrossRefGoogle Scholar
  20. 20.
    Herz, A.V.M.: Collective Phenomena in Spatially Extended Evolutionary Games. J. Theor. Biol. 169, 65 (1994)CrossRefGoogle Scholar
  21. 21.
    Lindgren, K., Nordhal, M.G.: Evolutionary dynamics of spatial games. Physica D 75, 292 (1994)CrossRefzbMATHGoogle Scholar
  22. 22.
    Nowak, M.A., Sigmund, K.: A Strategy of Win-Stay, Lose-Shift that outperforms Tit-for-Tat in the Prisoner’s Dilemma Game. Nature 364, 56 (1993)CrossRefGoogle Scholar
  23. 23.
    Axelrod, R.: The evolution of cooperation. Basic Books, New York (1984)zbMATHGoogle Scholar
  24. 24.
    Hauert, C., Stenull, O.: Simple adaptive Strategy wins the Prisoners Dilemma. J. Theor. Biol. 218, 261 (2002)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Schneider, J.J., Kirkpatrick, S.: Stochastic optimizazion. Springer, Heidelberg (2007)Google Scholar
  26. 26.
    Hofbauer, J., Sigmund, K.: Evolutionary Games and Population Dynamics. Cambridge University Press, Cambridge (1998)CrossRefzbMATHGoogle Scholar
  27. 27.
    Díaz Ochoa, J.G. (ed.): Diversity under Variability and extreme Variability of Environments. arXiv:0804.2898v1 (2008)Google Scholar
  28. 28.
    Albert, R., Barabasi, A.L.: Statistical mechanics of complex networks. Reviews of Modern Physics 74, 47 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Granovetter, M.: Threshold Models of Collective Behavior. The American Journal of Sociology 83, 1420 (1978)CrossRefGoogle Scholar
  30. 30.
    Huberman, B.: The Dynamics of Social Dilemmas. Scientific American 76 (1994)Google Scholar

Copyright information

© ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering 2009

Authors and Affiliations

  • Juan G. Díaz Ochoa
    • 1
  1. 1.Institute for Theoretical PhysicsFachbereich 1, Bremen UniversityBremenGermany

Personalised recommendations