Time Dependent Virus Replication in Cell Cultures

  • Juan G. Díaz Ochoa
  • Andreas Voigt
  • Heiko Briesen
  • Kai Sundmacher
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 4)


We present in this report a stochastic model for the virus replication of influenza A in a cell culture. We consider not only the infection process of individual cells but also the number of intracellular components expressed in virus equivalent. Given that this expression is non constant in time we suggest a variable threshold, related to a viral resistance in the cell population, that could explain the time variation in the viral expression in the cell seen in experiments.


Virus Replication Influenza A Cellular viral Resistance 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Voltaire, F.M.A.: Lettres Philosophiques. The Harvard Classics (1909)Google Scholar
  2. 2.
    Wittaker, G., Bui, M., Helenius, A.: The Role of Nuclear Import and Export in Influenza Virus Infection. Trends in Cell Biology 6, 67 (1996)CrossRefGoogle Scholar
  3. 3.
    Ludwig, S., Pleschka, S., Wolff, T.: A fatal Relationship–Influenza Virus Interactions with the Host Cell. Viral Immunol. 12, 175 (1999)CrossRefGoogle Scholar
  4. 4.
    Nowak, M.A., McMichael, A.J.: How the HIV defeats the Immune System. Scientific American, Agust (1995)Google Scholar
  5. 5.
    Fergunson, N.M., Cummings, D.A.T., Cauchemez, S., Fraser, C., Riley, S., Meeyai, A., Iamsirithaworn, S., Burke, D.S.: Strategies for Containing an emerging Influenza Pandemic in Southeast Asia. Nature 437, 209 (2005)CrossRefGoogle Scholar
  6. 6.
    Sidorenko, Y., Reichl, U.: Structured model of Influenza virus replication in MDCK cells. Biotechnology and Bioengineering 88, 1 (2004)CrossRefGoogle Scholar
  7. 7.
    Wu, H., Huang, Y., Dykes, C., Liu, D., Ma, J., Perelson, A.S., Demeter, L.M.: Modeling and Estimation of Replication Fitness of Human Immunodeficiency Virus Type 1 In Vitro Experiments by Using a Growth Competition Assay. J. Virol. 80, 2380 (2006)CrossRefGoogle Scholar
  8. 8.
    Marée, A.F.M., Keulen, W., Boucher, C.A.B., De Boer, R.J.: Estimating Relative Fitness in Viral Competition Experiments. J. Virol. 74, 11067 (2000)CrossRefGoogle Scholar
  9. 9.
    Mittal, A., Bentz, J.: Comprehensive Kinetic Analysis of Influenza Hemagglutinin-Mediated Membrane Fusion: Role of Sialate Binding. Biophysical Journal 81, 1521 (2001)CrossRefGoogle Scholar
  10. 10.
    Sidorenko, Y., Schulze-Horsel, J., Voigt, A., Reichl, U., Kienle, A.: Stochastic Population Balance Modeling of Influenza Virus Replication in Vaccine Production Processes. Chem. Eng. Sci. 63, 157 (2008)CrossRefGoogle Scholar
  11. 11.
    Sidorenko, Y., Voigt, A., Schultye-Horsel, J., Reichl, U., Kienle, A.: Stochastic Population Balance Modeling of Influenza Virus Replication in Vaccine Production Processes. Chem. Eng. Sci. (2008) doi: 10.1016-j.ces.2007.12.034Google Scholar
  12. 12.
    Nowak, M.A., May, R.M.: Virus Dynamics. Oxford University Press, New York (2000)zbMATHGoogle Scholar
  13. 13.
    Gillespie, D.T.: A General Method for Numerically Simulating the Stochastic Time Evolution of Coupled Chemical Reactions. Jour. Comp. Phys. 22, 403 (1976)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Takaoka, A., Yanai, H.: Interferon signalling network in innate defence. Cellular Microbiology 8, 907 (2006)CrossRefGoogle Scholar

Copyright information

© ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering 2009

Authors and Affiliations

  • Juan G. Díaz Ochoa
    • 1
    • 2
  • Andreas Voigt
    • 1
    • 2
  • Heiko Briesen
    • 1
  • Kai Sundmacher
    • 1
    • 2
  1. 1.Max Planck Institute for Complex Technical SystemsMagdeburgGermany
  2. 2.Otto-von-Guericke-UniversitätMagdeburgGermany

Personalised recommendations